BIOTEMPLATED SYNTHESIS OF ALUMINA FIBRES BY CONTROLLED HYDROLYSIS OF SALT PRECURSOR

Alumina fibres were obrained by impregnation of the cellulose biotemplate with pre-cursor solutions in which the hydrolysis ratio [OH-]/[Al3+] is varied and in which different al-uminium oligo- and polycations content. The biotemplates and alumina fibres were studied by X-ray, TG/DSC, electrophoretic light scattering, SEM, and N2 adsorption/desorption. It was shown that the infiltration with the precursor did not affect the cellulose structure. The possibility to vary the surface area, pore size and pore volume of the ceramic fibres by con-trolled hydrolysis of aluminum was demonstrated.

Key words: aluminium oligo- and polycations, biotemplated synthesis, alumina fibres

REFERENCES
1. Grashchenkov D.V., Balinova Yu.A., Tinyakova E.V. // Glass and Ceramics. 2012. V. 69. N 3. P. 130 133.
2. Bunsell A.R., Berger M.H. // J. Eur. Cer. Soc. 2000. V. 20. N 13. P. 2249 2260.
3. Benítez-Guerrero M., Pérez-Maqueda L.A., Sánchez-Jiménez P.E., Pascual-Cosp J. // Micropor. Mesopor. Mat. 2014. V. 185. P. 167-178.
4. Zuo Ch., Li Q., Peng G., Xing G. // Prog. Nat. Sci. 2011. V. 21. N 6. P. 455 459.
5. Delbrücke T., Gouvêa R.A., Moreira M.L., Raubach C.W., Varela J.A., Longo E., Gonçalves M.R. // J. Eur. Cer. Soc. 2013. V. 33. N 6. P. 1087 1092.
6. Ermolenko I.N., Ul'anova T.M., Bityaz P.A., Fyodorova I.L. Fibrous refractory ceramic materials. Minsk: Nauka i tekhnika. 1991. 255 p (in Russian).
7. Frink C.B. // J. Inorg. Chem. 1963. V. 2. N 3. P. 473 – 478.
8. Gasey W.H., Phillips B.L., Furrer G. // Rev. Mineral. Geochem. 2001. V. 44. N 1. P. 167 – 190.
9. Akitt J.W., Elders J.M. // J. Chem. Soc. Dalton Trans. 1988. N. 5. P. 1347 – 1355.
10. Huang B., Bartholomew C.H., Woodfield B.F. // Micropor. Mesopor. Mat. 2014. V. 183. P. 37. – 47.
11. Butman M.F., Kochkina N.E., Makarov V.V., Knot'ko A.V. // Pis’ma o materialakh. 2015. V. 5. N 1. P. 61-66 (in Russian).
12. Butman M.F., Belozerov A.G., Karasev N.S., Kochkina N.E., Khodov I.A., Ovchinnikov N.L. // Nanotechnologies in Russia. 2015. V. 9-10. P. 706 – 712.
13. Majumdar A., Butola B.S., Srivastava A. // Materials and Design. 2014. V. 54. P. 295 – 300.
14. Butman M.F., Ovchinnikov N.L., Arbuznikov V.V., Agafonov A.V. // Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2013. V. 56. N 12. С. 68-73 (in Russian).
15. Kato M., Isogai A., Onabe F. // J. Wood Sci. 2000. V. 46. N 4. P. 310 – 316.
16. Fokina L.Yu. Dubovyi V.K., Chizhov G.I. // Izv. Vyssh. Uchebn. Zaved. Lesnoiy Zhurnal. 2002. N 3. P. 78 – 81 (in Russian).
17. Zhorin V.A., Kiselev M.R., Zelenetskiy A.N., Akopova T.A. // Polymer Science. Series A. 2010. V. 52. N 8. P. 835 – 841.
18. Zhao D., Daib Ya, Chena K., Sun Yu., Yang F., Chen K. // J. Anal. Appl. Pyrol. 2013. V. 102. P. 114 – 123.
19. Maschio L.J., Pereira P.H., Da Silva M.L. // Carbohydr Polym. 2012. V. 89. N 3. P. 992 – 996.
20. Dyakonov A.J., Grider D.A. Ihrig A.M. // J. Fire Sciences. 1999. V. 17. N 6. P. 438 – 458.
21. Barzegar-Bafrooei H., Ebadzadeh T. // Adv. Powder Technol. 2011. V. 22. N 3. P. 366 – 369.

2016, Т. 59, № 5, Стр. 47-53

Purchase

You will get the pdf-copy of your article by e-mail