Some features of the solvent H/D-isotope effect method are discussed in the frame of development of ideas about the solvation mechanism including the structural and thermody-namic characteristics concept being proposed by G.A. Krestov and its followers. We have found it necessary to debate the possibility of employing the H2O-by-D2O isotope substitution for thermodynamic studying of binary aqueous systems containing a proton-donating organic non-electrolyte. In this regard, the two main aspects of the problem are discussed: (i) how the H-D exchange affects the thermodynamic (enthalpic) solvent isotope effects and (ii) how such effects dependent on the partial or complete pre-deuteration of a solute molecule. All potential-ly exchangeable protons (of N-H, O-H,) in heavy water are replaced by deuterons, but the fast exchange of D between D2O and the C-H (in methyl and methylen groups) does not occur. Herewith the extent to which proton-donor sites in complex molecules are stabilized by intra-molecular hydrogen bonding remains uncertain, making it difficult to assess details of H-D exchange mechanisms in the hydration process. It is important to note that the H-D-isotope exchange is accompanied by changes in the molecular composition both the solute and solvent (due to forming HDO) in the nearest environment. This affects the thermodynamic (mole-additive) parameters of solvation process in heavy water as well as the corresponding isotope effects. The problem can be partly overcome by using the deuterium-substitution in a solute molecule. In this case, the molar mass of each solution component does not change but we should not forget here on the effect of secondary H/D isotope substitution in the solute. From a purely thermodynamic view, we can focus only on the analysis of H/D isotope effects in char-acteristics of its sublimation or vaporization. Herewith H- and D-bonded systems have the same distinctions in the (zero-point) vibration energy as in individual components. It because the specified isotope effects can be rather directly related to the condensed-phase partition functions which may be written down under the assumption of isotope-independent potential energy surface (within the precision of Born-Oppenheimer “adiabatic” approximation).

Key words: aqueous non-electrolyte solution, solvent isotope effect, H-D exchange, solvation standard enthalpy

1. Abrosimov V.K. In: Modern Problems of Solution Chemistry / Krestov G.A., Vinogradov V.I., Kessler Yu.M. et al. M.: Nauka. 1986. P. 97−156 (in Russian).
2. Abrosimov V.K., Krestov A.G. In: Achievements and Problems of Solvation Theory: Structural and Thermodynamic Aspects / Abrosimov V.K., Krestov Al.G., Al’per G.A. et al. M.: Nauka. 1998. P. 5−20 (in Russian).
3. Ivanov E.V., Abrosimov V.K. In: Biologically Active Substances in Solutions: Structure, Thermodynamics and Reactivity / Abrosimov V.K., Agafonov A.V., Chumakova R.V. et al. M.: Nauka. 2001. P. 110−183 (in Russian).
4. Ivanov E.V., Abrosimov V.K. In: Concentrated and saturated solutions / Melikhov I.V., Kozlovskaya E.D., Kutepov A.M. et al. M.: Nauka. 2002. P. 314−415 (in Russian).
5. Abrosimov V.K., Ivanov E.V. In: Water: Structure, State and Solvation. The Recent Advances / Kessler Yu.M., Petrenko V.E., Lyaschenko A.K. et al. M.: Nauka. 2003. P. 277−346 (in Russian).
6. Ivanov E.V., Abrosimov V.K., Lebedeva E.Yu. // J. Struct. Chem. 2004. V. 45. N 6. P. 974−980. DOI: 10.1007/s10947-005-0088-4.
7. Ivanov E.V., Abrosimov V.K. // J. Solution Chem. 2007. V. 36. N 3. P. 313−325. DOI:10.1007/s10953-006-9118-x.
8. Ivanov E.V., Krishtal’ S.P., Ivlev D.V. In: Structural Self-organization in Solution and at Interfaces / Kiselev M.G., Pukhovskiy Yu.P., Al’per G.A. et al. M.: Nauka. 2008. P. 263−340 (in Russian).
9. Ivanov E.V., Batov D.V. // Thermochim. Acta. 2011. V. 523. N 1−2. P. 253−257. DOI: 10.1016/j.tca.2011.05.019.
10. Ivanov E.V., Abrosimov V.K., Lebedeva E.Yu. // J. Chem. Thermodyn. 2012. V. 53. P. 131−139. DOI: 10.1016/j.jct.2012.04.007.
11. Ivanov E.V., Batov D.V., Abrosimov V.K. // Thermo-chim. Acta. 2014. V. 590. P. 206−209. DOI: 10.1016/ j.tca.2014.06.025.
12. Ivanov E.V., Lebedeva E.Yu., Abrosimov V.K. // J. Chem. Eng. Data. 2015. V. 60. N 7. P. 2079−2089. DOI: 10.1021/acs.jced.5b00154.
13. Swain C.G., Bader R.F.W. // Tetrahedron. 1960. V. 10. N 3−4. P. 182− 199. DOI: 10.1016/S0040-4020(01)97806-8.
14. Rabinovich I.B. Influence of Isotopy on the Physicochemical Properties of Liquids. New York: Consultants Bureau. 1970. 304 p.
15. Marcus Y., Ben-Naim A. // J. Chem. Phys. 1985. V. 83. N 9. P. 4744− 4759. DOI: 10.1063/1.449000.
16. Engdahl A., Nelander B. // J. Chem. Phys. 1987. V. 86. N 4. P. 1819− 1823. DOI: 10.1063/1.452182.
17. Badyal Y.S., Price D.L., Saboungi M.-L., Haeffner D.R., Shastri S.D. // J. Chem. Phys. 2002. V. 116. N 24.
P. 10833−10837. DOI: 10.1063/ 1.1477457.
18. Bardo R.D., Wolfsberg M. // J. Chem. Phys. 1975. V. 62. N 11. P. 4555− 4558. DOI: 10.1063/1.430363.
19. Van Hook A.W. // Nukleonika. 2011. V. 56. N 3. P. 217−240.
20. Bell R.P. The Proton in Chemistry; 2-nd ed. New York: Cornell University Press. 1973. 310 p.
21. Krestov G.A., Korolev V.P., Batov D.V. // Dokl. Akad. Nauk SSSR. 1987. V. 293. N 4. P. 882−884 (in Russian).
22. Plekhanov G.V. Isotopes in condensed matter. Berlin−Heidelberg: Springer-Verlag. 2013. 290 p.
23. Lobyshev V.I., Kalinichenko L.P. Isotope Effects of D2O in Biological Systems. M.: Nauka, 1978. 216 p. (in Russian).
24. Fenby D.V., Chand A. // J. Chem. Soc. Faraday Trans. 1. 1978. V. 74. P. 1768−1775. DOI: 10.1039/F19787401768.
25. Fenby D.V., Chand A. // J. Chem. Thermodyn. 1978. V. 10. N 10. P. 997 − 1001. DOI: 10.1016/0021-9614(78)90061-7.
26. Melander L., Saunders W.H. Reaction Rates of Isotopic Molecules. New York: Wiley. 1980. 331 p.
27. Green M.K., Gard E., Bregar J., Lebrilla C.B. // J. Mass Spectr. 1995. V. 30. N 8. P. 1103−1110. DOI: 10.1002/ jms.1190300807.
28. Pyper J.W., Dupzyk R.J., Friesen R.D., Bernasek S.L., May C.A., Echeverria A.W., Tolman L.F. // Int. J. Mass Spectrom. Ion Physics. 1977. V. 23. N 3. P. 209−225. DOI: 10.1016/0020-7381(77)80014-4.
29. Duer W.C., Betrand G.L. // J. Amer. Chem. Soc. 1975. V. 97. N 14. P. 3894−3897. DOI: 10.1021/ja00847a003.
30. Jakli Gy., Van Hook V.A. // J. Phys. Chem. 1981. V. 85. N 23. P. 3480− 3493. DOI: 10.1021/j150623a025.
31. Jakli Gy., Van Hook V.A. // J. Chem. Eng. Data. 1996. V. 41. N 2. P. 249−253. DOI: 10.1021/je9502354.
32. Ivanov E.V., Abrossimov V.X. // J. Solution Chem. 1996. V. 25. N 2. P. 191−201. DOI: 10.1007/BF00972689.
33. Koga Y. Solution Thermodynamics and Its Application to Aqueous Solutions: A differential Approach. Amsterdam: Elsevier. 2007. 296 p.
34. Ivanov E.V. // J. Chem. Thermodyn. 2012. V. 47. P. 162−170. DOI: 10.1016/j.jct.2011.10.009.
35. Hill D.J.T., Malar K. // Aust. J. Chem. 1975. V. 28. N 1. P. 7−14. DOI: 10.1071/CH9750007.
36. Hallén D., Nilsson S.-O., Rothschild W., Wadsö I. // J. Chem. Thermodyn. 1986. V. 18. N 5. P. 429−442. DOI: 10.1016/0021-9614(86)90090-X.
37. Lopez M.M., Makhatadze G.I. // Biophys. Chem. 1998. V. 74. N 2. P. 117−125. DOI: 10.1071/CH9750007.
38. Marczak W., Spurek M. // J. Solution Chem. 2004. V. 33. N 2. P. 99− 116. DOI: 10.1023/B:JOSL.0000030278. 21608.a1.
39. Whiddon C., Söderman O. // Lengmuir. 2001. V. 17. N 6. P. 1803−1806. DOI: 10.1021/la001171k.
40. Angarten R.G., Loh W. // J. Chem. Thermodyn. 2014. V. 73. P. 218−223. DOI: 10.1016/j.jct.2014.01.001.
41. Derome A.E. Modern NMR Techniques for Chemistry Research (Organic Chemistry Series, V. 6). Oxford−New York: Pergamon Press. 1987. 295 p.
42. Oparin R.D., Dyshin A.A., Kiselev M.G. // Russ. J. Phys. Chem. B. 2013. V. 7. N 7. P. 863−879. DOI: 10.1134/ S1990793113070129.
43. Malferrari M., Venturoli G., Francia F., Mezzetti A. In: Spectroscopy of Biological Molecules / Marques M.P., Batista Carvalho L.A.E., Harris P.I. (Eds.). Amsterdam: IOS Press. 2013. P. 165−169.
44. Fitter J., Gutberlet T., Katsaras J. Neutron Scattering in Biology: Techniques and Applications. Berlin − Heidelberg: Springer-Verlag. 2006. 557 p.
45. Konermann L., Pan J., Liu Y.-H. // Chem. Soc. Rev. 2011. V. 40. N 3. P. 1224−1234. DOI: 10.1039/C0CS00113A.
46. Siu W.W.Y., Wong T.Y.H., Lai J.T.W., Chong A., Koga Y. // J. Chem. Thermodyn. 1992. V. 24. P. 159−165. DOI: 10.1016/S0021-9614(05)80045-X.
47. Kwart H., Kuhn L.P., Bannister E.L. // J. Am. Chem. Soc. 1954. V. 76. N 23. P. 5998−6001. DOI: 10.1021/ ja01652a030.
48. Jancso G., Van Hook W.A. // Chem. Rev. 1974. V. 74. N 6. P. 689−750. DOI: 10.1021/cr60292a004.
49. Tyunina V.V., Krasnov A.V., Tyunina E.Yu., Badelin, V.G., Girichev G.V. // J. Chem. Thermodyn. 2014. V. 74. P. 221−226. DOI: 10.1016/ j.jct.2014.02.003.

2016, Т. 59, № 6, Стр. 8-15


You will get the pdf-copy of your article by e-mail