ZINC(II) BIS(DIPYRROMETENATES) AS NEW FLUORESCENT CHEMOSENSORS OF N- AND O-CONTAINING ANALYTES

The results of spectral studies of the fluorescence of binuclear zinc(II) bis(dipyrrinate)s with 3,3′-, 2,3′- and 2,2′-bis(dipyrrine)s of the composition [Zn2L2] in binary mixtures of cyclohexane and N- and O -containing solvent Х (acetone, DMF, DMSO, TEA) are presented. Spectrophotometric studies have shown that additive in cyclohexane of analyte upto χХ<0.2 leads to red shift (to ~10 nm) of emission band maximum and to a sharp de-crease in fluorescence quantum yield (φ) of [Zn2L2] luminophores. The observed effect is due to the additional coordination processes of the electron-donor molecules X, leading to the formation of solvates [Zn2L2Xn]. The efficiency of fluorescence quenching of [Zn2L2], formed by 3,3′, 2,3′- or 2,2′-bis(dipyrrine)s, is different. Zinc(II) 3,3′-bis(dipyrrometenat) demon-strates the highest sensitivity to fluorescence at the presence of X, as compared with the 2,3′- and 2,2′-analogues. The interpretation of found experimentally linear correlations of φ and calculated on the Stern-Volmer model of the apparent quenching fluorescence constants of helicates from the electron-donating ability of the analytes was given. Indicators of intensity relative change at different wavelengths of the [Zn2L2] fluorescence spectrum were suggested as analytical criterion of the analyte identification. The detection limits of toxicants X by means of [Zn2L2] amounted upto ~ 10–7– 10–5 mol/l in organic media. High specificity of spectral-luminescence characteristics changing in the presence of particular N- and O-containing analytes provides the possibility of using [Zn2L2] helicates as new fluorescent se-lective chemosensors of the electron-donor molecules in liquid media.

Key words: zinc(II) bis(dipyrrometenate)s, sensor, fluorescence quenching detection limit

REFERENCES
1. Antina E.V., Antina L.A., Guseva G.B., Berezin M.B., V’yugin A.I., Semeikin A.S., Ksenofontov A.A. // Russ. J. Inorg. Chem. 2014. V. 59. N 6. P. 578–586. DOI: 10.1134/ S0036023614060023.
2. Zakharova S. P., Rumyantsev E.V., Antina E.V. // Russ. J. Coord. Chem. 2005. V. 31. N 12. P. 849–855. DOI: 10.1007/s11173-005-0180-5.
3. Berezin M.B., Antina E.V., Dudina N.A., Bushmarinov I.S., Antipin M.Y., Antina L.A. // Mendeleev Commun. 2011.
V. 21. P. 168–170. DOI: 10.1016/j.mencom.2011.04.020.
4. Sheldrick W.S., Engel J. // J. Chem. Soc. Chem. Commun. 1980. V. 5. P. 5–6. DOI: 10.1039/c39800000005.
5. Berezin M.B., Semeikin A.S., Yutanova S.L., Antina E.V., Guseva G.B., V’yugin A.I. // Russ. J. Gen. Chem. 2012. V. 82. N 7. P. 1287–1292. DOI:10.1134/S1070363212070183.
6. Fischer M., Georges J. // Chem. Phys. Lett. 1996. V. 260. P. 115–118. DOI: 10.1016/0009-2614(96)00838-X.
7. Antina E.V., Antina L.A., Guseva G.B., Dudina N.A., V'yugin A.I., Kuznetsova R.T., Solomonov A.V. // Dyes and Pigments. 2015. V. 113. P. 664–674. DOI: 10.1016/j.dyepig. 2014.10.002.
8. Guseva G.B., Antinа E.V., Ksenofontov A.A., Baranni-kov V.P., Vyugin A.I. // Thermochim. Acta. 2014. V. 589. P. 31–36. DOI: 10.1016/j.tca.2014.05.007.
9. Hill C.L., Williamson M.M. // J. Chem. Soc. Chem. Com-mun. 1985. P. 1228–1229. DOI: 10.1039/C39850001228.
10. Gutmann V. // Coord. Chem. Rev. 1976. V. 18. P. 225–255. DOI: 10.1016/S0010-8545(00)82045-7.
11. Lakowicz J.R. Principles of Fluorescence Spectroscopy, Springer Science & Business Media. 2007. 496 p.

2016, Т. 59, № 6, Стр. 22-27

Purchase

You will get the pdf-copy of your article by e-mail