EFFECT OF PRESSURE ON EXCESS THERMODYNAMIC CHARACTERISTICS OF WATER + FORMAMIDE MIXTURE

Using the experimental data on the densities at atmospheric pressure and compressibil-ity coefficients, k=(Vo-V)/Vo, of water + FA mixture the changes in the following thermody-namic parameters were calculated under the pressure increase up to 100 MPa within the tem-perature range from 288.15 to 323.15 K: excess molar Gibbs energy, ΔPo→PGmE, excess molar entropy ,ΔPo→PSmE, and excess molar entropy ΔPo→PHmE. It was established that ΔPo→PGmEvalues were negative over the whole concentration range and minima appeared on ΔPo→PGmE= f(x2) functions at x2≈0.33. The pressure growth up to 100 MPa resulted in ΔPo→PGmE absolute values increase within entire concentration and temperature intervals. The changes in entropy component, -(ΔPo→PTSmE), of ΔPo→PGmEvalues were almost canceled by the enthalpy component changes. Minimal values of ΔPo→PSmE corresponded to x2≈ 0.33, exactly at that composition 2Н2О-FA associate formed. The isobaric temperature lowering caused the structure ordering also at x2≈ 0.33. The pressure growth promoted the increasing in exother-micity of the mixing enthalpies, HmE, of water and formamide. The changes in HmE value un-der the mixture compression are indicative of the larger exothermal contribution from new H-bonds formation as compared with the endothermic contribution from the decreasing in the to-tal amount of hydrogen bonds. The temperature lowering decreases ΔPo→PHmEvalues as well; maximal isotherms dispersion is observed at concentrations corresponding to maximal content of 2:1 or 1:1 associates of water and FA.

Key words: water, formamide, non-electrolytes mixtures, high pressure, excess thermodynamic properties

REFERENCES
1. Nielsen O.F., Lund P.A., Praestgraad E. // J. Chem. Phys. 1982. V. 77. P. 3878–3883.
2. Kálmán E., Serke I., Pálinkás G., Zeidler M.D., Wiesmann F.J., Bertagnolli H., Chieux P. // Z. Naturforsch. 1983. Bd. 38a. P. 231–236.
3. Ohtaki H., Funaki A., Rode B.M., Reibnegger G.J. // Bull. Chem. Soc. Jpn. 1983. V. 56. P. 2116–2121.
4. Ohtaki H., Itoh S. // Z. Naturforsch. 1985. Bd. 40a.
P. 1351–1352.
5. Miyake M., Kaji O., Nakashima N., Suzuki T. // J. Chem. Soc. Faraday Trans. 2 .1985. V. 81. P. 277–281.
6. Wiesmann F.J., Zeidler M.D., Bertagnolli H., Chieux P. // Mol. Phys. 1986. V. 57. P. 275–285.
7. Sagarik P.K., Ahlrichs R. // J. Chem. Phys. 1987. V. 86.
P. 5117–5126.
8. Puhovski Y.P., Rode B.M. // Chem. Phys. 1995. V. 190.
P. 61–82.
9. Suhai S. // J. Phys. Chem. 1996. V. 100. P. 3950–3958.
10. Bushuev Yu.G., ZaichikovA.M. // Izv. Akad. Nauk. SSSR, Ser. Khim. 1998. N 10. P. 1911–1917 (in Russian).
11. Lima M., Chelli R., Volkov V.V., Righini R. // J. Chem. Phys. 2009. V. 130. P. 204518.
12. Bakó I., Megyes T., Bálint S., Chihaia V., Bellissent-Funel M.-C., Krienke H., Kopf A., Suh S.-H. // J. Chem. Phys. 2010. V. 132. P. 014506.
13. Jadzyn J., Sґwiergiel J. // Phys. Chem. Chem. Phys. 2012. V. 14. P. 3170–3175.
14. Radnai T., Megyes T., Bakó I., Kosztolanyi T., Palinkas G., Ohtaki H. // J. Mol. Liq. 2004. V. 110. P. 123–132.
15. Ohtaki H. // J. Mol. Liq. 2003. V. 103–104. P. 3–13.
16. Ohtaki H., Katayama N., Ozutsumi K., Radnai T. // J. Mol. Liq. 2000. V. 88. P. 109–120.
17. Bellisent-Funel M.C., Nasr S., Bosio L. // J. Chem. Phys. 1997. V. 106. P. 7913–7919.
18. Redlich O., Kister A.T. // Ind. Eng. Chem. 1948. V. 40.
P. 345–348.
19. Egorov G. I., Makarov D. M., Kolker A.M. // Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2016. V. 59. N 2.
P. 13–18 (in Russian).
20. Egorov G. I., Makarov D. M., Kolker A.M. // Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2015. V. 58. N 1.
P. 8–13 (in Russian).
21. Egorov G.I., Makarov D.M. // Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2010. V. 53. N5. P. 45–48 (in Russian).
22. Egorov G.I., Makarov D.M. // PVTX properties of binary mixtures of non-electrolytes. LAP LAMBERT Academic Publishing, Saarbrucken, Germany. 2008. 189p.
23. Elola M.D., Ladanyi B.M. // J. Chem. Phys. 2006. V. 125. P. 184506.
24. Fu A., Du D., Zhou Zh. // J. Mol. Struct. (THEOCHEM). 2003. V. 623. P. 315–325.
25. Puhovskit Y.P., Rode B.M. // J. Phys. Chem. 1995. V. 99. P. 1566–1576.
26. Puhovskit Y.P., Rode B.M. // J. Chem. Phys. 1995. V. 102. P. 2920–2927.
27. Cordeiro M.A.M., Santana W.P., Cusinato R., Cordeiro J.M.M. // J. Mol. Struct. (THEOCHEM). 2006. V. 759.
P. 159–164.
28. Jelinska-Kazimierczuk M., Szydlowski J. // J. Solution Chem. 2001. V. 30. P. 623–640.
29. Torres R.B., Marchiore A.C.M., Volpe P.L.O. // J. Chem. Thermodyn. 2006. V. 38. P. 526–541.
30. Campos V., Gómez Marigliano A.C., Sólimo H.N. //
J. Chem. Eng. Data. 2008. V. 53. P. 211–216.
31. Boje L., Hvidt A. // J. Chem. Thermodyn. 1971. V. 3.
P. 663–673.
32. Tasker I.R., Spitzer J.J., Surl S.K., Wood R.H. // J. Chem. Eng. Data. 1983. V. 28. P. 266–275.
33. Zaiychikov A.M., Golubinskii O.E. // Zhurn. Fizich. Khim. 1996 V. 70. P. 1175–1179 (in Russian).
34. Uosaki Y., Iwana F., Moriyoshi T. // J. Chem. Thermodyn. 1992. V. 24. P. 797–808.

2016, Т. 59, № 6, Стр. 28-36

Purchase

You will get the pdf-copy of your article by e-mail