RELATIONSHIP BETWEEN MOLAR PARAMETERS OF VISCOUS FLOW AND ULTRASONIC WAVE PROPAGATION IN AQUEOUS SOLUTIONS OF AMINO ACIDS

Quantitative structure-property relationship (QSPR) correlations have been widely applied in biological active solutes over several decades. Many new descriptors (parameters) have been developed. Of the many parameters reported in literature, it is argued that the vol-ume (constitutional, geometrical, compressibility) properties play an important role in deter-mining the overall state of proteins consisting of the various amino acids residuals. On basis of experimental data on density, viscosity and ultrasound velocity for aqueous solutions of amino acids, the volume effects in characteristics of impulse transfer and ultrasound wave were studied. The analysis on the correlations between molar parameters of viscosity and ul-trasound velocity and molar volume for aqueous solutions of glycine, alanine, aminobutanoic acid, valine, leucine and serine has been carried. It was shown, that the temperature and the concentration dependences of viscosity and ultrasound velocity in the aqueous amino acids solutions may be represented using the molar approach of Krestov-Afanas`ev. An evaluation of the degree of correspondence of the correlation dependences to the experimental data was performed with the minimum distribution dispersion (SD), which was also called the sample standard deviation for regression, and the correlation coefficient (rcorr). It was shown that on basis of the correlations obtained, the densities or the molar volumes can be successfully used for the estimation of unknown values of the viscosities and sound speeds for the amino acid solutions.

Key words: viscosity, density, ultrasound velocity, molar parameters, amino acids, aqueous solu-tions, correlations

REFERENCES
1. Afanas’ev V.N., Krestov G.A. // Doklady Akademii Nauk SSSR. 1983. V. 269. N 3. P. 620-623 (in Russian).
2. Nikiforov M.Yu., Alper G.A., Krestov G.A. // Zhurn. Fizich. Khim. 1988. V. 62. N 2. P. 561-569 (in Russian).
3. Afanas`ev V.N., Tyunina E.Yu., Krestov G.A. // Zhurn. Fizich. Khim. 1993. V. 67. N 3. P. 460-462 (in Russian).
4. Afanas`ev V.N., Tyunina E.Yu., Krestov G.A. // Zhurn. Fizich. Khim. 1995. V. 69. N 3. P. 538-541. (in Russian).
5. Afanasyev V.N., Panenko E.S. // ASH-models in che-mistry. 1999. V. 136. N 1-2. P. 625-630.
6. Afanas`ev V.N., Tyunina E.Yu., Levochkina G.N. // Izv. Vyssh. Ucheb. Zaved. Khim. Khim. Tekhnol. 1997. V. 40. N 1. P. 41-45 (in Russian).
7. Tyunina E.Yu. // Zhurn. Fizich. Khim. 2014. V. 88. N 4. P. 557-563 (in Russian).
8. Afanasyev V.N., Tyunina E.Yu., Zyat`kova L.A. // Izv. Vyssh. Ucheb. Zaved. Khim. Khim. Tekhnol. 2000. V. 43. N 5. P. 96-102 (in Russian).
9. Davidova O.I., Tyunina E.Yu., Afanasyev V.N., Filatov V.A. Internal friction, volume properties and ultrasound propagation for acetone – chloroform system of different isotopic compose. M. 35 p. Dep. in VINITI 15.04.1991.
N 1601-В91 (in Russian).
10. Afanasyev V.N., Tyunina E.Yu., Chekunova M.D. // Russ. J. Phys. Chem. A. 2006. V. 80. N 12. P. 1929-1933.
11. Afanasyev V.N., Panenko E.S. // Russ. J. Phys. Chem. A. 2000. V. 74. N 2. P. 253-259.
12. Afanasyev V.N., Merchikova E.Yu., Krestov G.A. // Zhurn. Fizich. Khim. 1984. V. 58. N 8. P. 2067-2070 (in Russian)
13. Afanasyev V.N., Merchikova E.Yu., Krestov G.A. // Mezchvuz. Zbornik. “Salvation processes in solutions”. Iva-novo. 1985. P. 3-5 (in Russian).
14. Afanasyev V.N., Tyunina E.Yu., Ryabova V.V. // Russ. J. Phys. Chem. A. 2003. V. 77. N 7. P. 1074-1078.
15. Afanasyev V.N., Tyunina E.Yu., Ryabova V.V. // Zhurn. Struct. Khim. 2004. V. 45. N 5. P. 838-843.
16. Kikuchi M., Sakurai M., Nitta K. // J. Chem. Eng. Data 1995. V. 40. N 4. P. 935-942.
17. Duke M.M., Hakin A.W., McKay R.M., Preuss K.E. // Can. J. Chem. 1994. V. 72. P. 1489-1494.
18. Hakin A.W., Duke M.M., Klassen S.A., McKay R.M., Preuss K.E.// Can. J. Chem. 1994. V. 72. P. 362-368.
19. Kharakoz D.P. // Biophys. Chem. 1989. V. 34. P. 115-125.
20. Tyunina E.Yu., Badelin V.G. // Russ. J. Gen. Chem. 2008. V. 78. N 6. P. 1155-1160.
21. Tyunina E.Yu., Badelin V.G. // Biofizika. 2009. V. 54. N 5. P. 835-840 (in Russian).
22. Yan Z., Wang J., Liu W., Lu J. // Thermochimica Acta. 1999. V. 334. P. 17-27.
23. Belibagli K.B., Ayranci E. // J. Solution Chem. 1990. V. 19. P. 867-882.
24. Frenkel Ya.I. Kinetic theory of liquids. L.: Nauka. 1975. 592 p. (in Russian).
25. Damaskin B.B., Petriy O.A., Zcirlina G.A. Electroche-mistry. M.: Khimiya. 2001. 624 p. (in Russian).
26. Enderby J.E., Neilson G.W. // Rep. Prog. Phys. 1981. V. 44. P. 593-605.
27. Kharakoz D.P. // J. Phys. Chem. 1991. V. 95. P. 5634-5642.
28. Millero F.J., Surdo A.L., Shin C. // J. Phys. Chem. 1978. V. 82. P. 784-792.
29. Brettschneider S. Properties of Gases and Liquids. M.-L.: Khimiya. 1966. 536 p. (in Russian)
30. Lesnikovich A.I., Levchik S.V. Correlations in modern chemistry. Minsk: Universitetskoe. 1989. 118 p. (in Russian).
31. Chemistry and biochemistry of the amino acids. / Ed. by G.C. Barret. London-N.Y.: Chapman and Hall. 1985. 684 p.

2016, Т. 59, № 6, Стр. 64-71

Purchase

You will get the pdf-copy of your article by e-mail