The metal carboxylates such as metal pivalates (salts of the pivalic acid (CH3)3CCOOH) attract a great interest as most promising precursors for chemical vapor deposition (CVD) technology. The possibility to use these substances in the CVD technology is specified by their good thermal stability and high volatility. For modeling of chemical reac-tions with metal pivalates in the gas-phase and the data on molecular structure will be very useful, in particularly information about effect of central metal ion to geometry of pivalic lig-ands. In the frame of this task the structures of metal pivalate molecules and pivalic acid (H(piv)) in a gas phase should be finding. The aim of present work is theoretical investigation of the geometry and IR-spectrum of H(piv) using density functional theory (DFT) methods. All calculations were performed using the Gaussian 03 program. The optimization of geome-try and quadratic force field calculations were carried out using DFT functionals B3LYP, PBE, PBE0 and BP86 with correlation-consistent triple-ζ valence cc-pVTZ basis sets for O, C, and H. Appropriate assignment of vibrational modes was carried out by the potential en-ergy distribution (PED) analysis among internal coordinates using the SHRINK program. According to DFT computations, the H(piv) molecule has an equilibrium structure of Cs symmetry with Гvib=26A'+19A''. The theoretical and experimental IR-spectra are satisfactori-ly agreed. The comparison of the ten intensities of highest bands in spectra allowed determin-ing linear correlation between peaks position in experimental and modeling IR-spectra. It should be note the complicated composition of vibrational modes.

Key words: pivalic acid, vibration spectra, quantum chemical calculations

1. Altsybeev A.E., Kuzmina N.P., Malkerova I.P., Alikha-nyan A.S., Korsakov I.E. Zhurn. Neorg. Khimii. 2006. V. 51. N 1. P. 1-6 (in Russian).
2. Kamkin N.N., Kuzmina L.G., Kayumova D.B., Yaryshev N.G., Dementev A.I., Alikhanyan A.S. Zhurn. Neorg. Khimii. 2012. V. 57. N 9. P. 1350-1354 (in Russian).
3. Kamkin N.N., Kayumova D.B., Yaryshev N.G., Demen-t’yev A.I., Malkerova I.P., Alikhanyan A.S. Zhurn. Neorg. Khimii. 2012. V. 57. N 10. P. 1392-1396 (in Russian).
4. Lukyanova V.A., Papina T.S., Didenko K.V., Alikhanyan A.S. J. Therm. Anal. Calorimetry. 2008. V. 92. N 3. P. 743-746.
5. Alikhanyan A.S., Didenko K.V., Girichev G.V., Giricheva N.I., Pimenov O.A., Shlykov S.A., Zhurko G.A. Struct. Chem. 2011. V. 22. N 2. P. 401-409.
6. Sugiura T., Yoshikawa H., Awaga K. Inorg. Chem. 2006. V. 45. N 19. P. 7584-7586.
7. Kiselyeva E.A., Byesyedin D.V., Koryenyev Yu.M. Zhurn. Phys. Khimii. 2005. V. 79. N 9. P. 1658-1661 (in Russian).
8. Pimenov O.A., Zhabanov Y.A., Pogonin A.E., Blomeyer S., Puchkov B.V. Struct. Chem. 2015. V. 26. N 5-6. P. 1443-1450.
9. Maréchal Y. J. Chem. Phys. 1987. V. 87. N 11. P. 6344-6353.
10. Hill I.R., Levin I.W. J. Chem. Phys. 1979. V. 70. N 2. P. 842-851.
11. Eliason T.L., Havey D.K., Vaida V. Chem. Phys. Lett. 2005. V. 402. N 1–3. P. 239-244.
12. Vener M.V., Kühn O., Bowman J.M. Chem. Phys. Lett. 2001. V. 349. N 5–6. P. 562-570.
13. Fernández L.E., Marigliano A.C.G., Varetti E.L. Vibrat. Spectrosc. 2005. V. 37. N 2. P. 179-187.
14. Olbert-Majkut A., Ahokas J., Lundell J., Pettersson M. Chem. Phys. Lett. 2009. V. 468. N 4–6. P. 176-183.
15. Reva I.D., Plokhotnichenko A.M., Radchenko E.D., Sheina G.G., Blagoi Y.P. Spectrochim. Acta. 1994. V. 50A. N 6. P. 1107-1111.
16. Zelsmann H.R., Mielke Z., Marechal Y. J. Molec. Struct. 1990. V. 237. P. 273-283.
17. Burneau A., Genin F., Quiles F. Phys. Chem. Chem. Phys. 2000. V. 2. N 22. P. 5020-5029.
18. Sliznev V.V., Pogonin A.E., Ishenko A.A., Girichev G.V. Makrogeterotsikly. 2014. V. 7. N 1. P. 60-72 (in Russian).
19. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Vreven J.T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas Ö., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A. Gaussian 03, Revision B.03, 2003, Gaussian Inc. Pittsburgh PA.
20. Becke A.D. J. Chem. Phys. 1993. V. 98. P. 5648-5652.
21. Adamo C., Barone V. J. Chem. Phys. 1999. V. 110. P. 6158-6169.
22. Perdew J.P., Burke K., Ernzerhof M. Phys. Rev. Lett. 1996. V. 77. P. 3865-3868.
23. Perdew J.P., Burke K., Ernzerhof M. Phys. Rev. Lett. 1997. V. 78. P. 1396.
24. Perdew J.P. Phys. Rev. B. 1986. V. 33. N 12. P. 8822-8824.
25. Becke A.D. Phys. Rev. A. 1988. V. 38. N 6. P. 3098-3100.
26. Dunning J. J. Chem. Phys. 1989. V. 90. N 2. P. 1007-1024.
27. Zhurko G.A., Zhurko D.A. // index.html.
28. Sipachev V.A. J. Mol. Struct. (Theochem). 1985. V. 121. N 1-2. P. 143 – 151.
29. Sipachev V.A. Struct. Chem. 2000. V. 11. N 2. P. 167-172.
30. Sipachev V.A. J. Mol. Struct. 2001. V. 567-568. P. 67 – 72.
31. Linstrom P.J., Mallard W.G. NIST Chemistry WebBook, NIST Standard Reference Database Number 692016.

2016, Т. 59, № 7, Стр. 17-22


You will get the pdf-copy of your article by e-mail