MODIFICATION OF SURFACE OF DOUBLE WALL CARBON NANO TUBES BY FULLERENE C60

The composite samples based on double-wall carbon nano tubes and fullerenes fol-lowed by laser treatment were prepared. XPS confirmed existence of essential contact between two components of the composite. The differential charging effect disappears after laser pro-cessing, which induces photopolymerization of fullerene clusters. The TEM showed close-packed continuous coating of cross-linked C60 clusters formed on the surface of nano tubes after laser irradiation.

Key words: DWCNT, C60, composites, XPS, differential charging effect, oxidative modification, laser processing

REFERENCES
1. Desselhaus M.S., Desselhaus G., Eklund P.S. Science of fullerenes and nanotubes. London: Academic Press. 1996. 965 p.
2. Rakov E.G. Nanotubes and fullerenes. M.: University book. Logos. 2006. 376 p. (in Russian)
3. Ruoff R.S., Ruoff A.L. Appl. Phys. Lett. 1991. V. 59. N 13. P. 1553‒1555. DOI: 10.1063/1.106280.
4. Ruoff R.S., Ruoff A.L. Nature. 1991. V. 350. N 6320. P. 663‒664. DOI: 10.1038/350653a0.
5. Trefilov V.I., Shchur D.V., Tarasov B.P., Shulga Yu. M., Chernogorenko A.V., Pishchuk V.K., Zaginaiychenko S.Yu. Fullerenes are a basis of future materials. Kiev: ADEF-Ukraina. 2001. 148 p. (in Russian).
6. Popov V.N. Mater. Sci. Engin. R. 2004. V. 43. N 2. P. 61‒102. DOI: 10.1016/j.mser.2003.10.001.
7. Rafii-Tabar H. Phys. Rep. 2004. V. 390. N 4‒5. P. 235‒452. DOI: 10.1016/j.physrep.2003.10.012.
8. Sheka E. Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics. CRC Press. 1 edition. 2011. 328 p.
9. Manna A.K., Pati, S.K. Chem.Phys.Chem. 2013. V. 14. N 9. P. 1844–1852. DOI: 10.1002/cphc.201300155.
10. Yu D., Park K., Durstock M., Dai L. J. Phys. Chem. Lett. 2011. V. 2. N 10. P.1113–1118. DOI: 10.1021/jz200428y.
11. Guerin H. J. Chim. Phys. 1998. V. 95. N 3. P. 561 -573. DOI: 10.1051/jcp:1998168
12. Smith R., Webb R.P. Proceedings: Mathematical and Physical Sciences. 1993. V. 441. N 1913. P. 495-499. DOI: 10.1098/rspa.1993.0075.
13. Shen C., Brozena A. H., Wang Y.H. Nanoscale. 2011. V. 3. N 2. P. 503-518. DOI: 10.1039/c0nr00620c.
14. Karaeva A.R., Khaskov M.A., Mitberg E.B., Kulnitskiy B.A., Perezhogin I.A., Ivanov L.A., Denisov V.N., Kiri-chenko A.N., Mordkovich V.Z. Fullerenes, Nanotubes and Carbon Nanostructures. 2012. V. 20. N 4-7. P. 411-418. DOI: 10.1080/1536383X.2012.655229.
15. Ivanov A.L., Mavrin B.N., Matveets Yu.A., Stepanov A.G., Chekalin S.V. Quantum Electronics. 1998. V. 28. N 8.
P. 689-691. DOI: 10.1070/QE1998v028n08ABEH001295.
16. Masterov V.F. Sorosov Educ. J. 1997. N 1. P. 92-99.
17. Werner H., Wohlers M., Herein D., Bublak D., Blöcker J., Schlögl R., Reller A. Fullerenes, Nanotubes and Carbon Nanostructures. 1993. V. 1. N 2. P. 199 – 219. DOI: 10.1080/10641229308018363H.
18. Semenov K.N., Charykov N.A., Keskinov V.A., Poartman A.K., Blokhin A.A., Kopyrin A.A. J. Chem. Ens. Data. 2010. V. 55. N 1. P. 13-36. DOI: 10.1021/je900296s.
19. Zschoerper N.P., Katzenmaier V., Vohrer U., Haupt M., Oehr C., Hirth T. Carbon. 2009. V. 47. N 9. P. 2174 –2185. DOI: 10.1016/j.carbon.2009.03.059.
20. Kundu Sh., Wang Y., Xia W., Muhler M. J. Phys. Chem. C. 2008. V. 112. N 43. P. 16869–16878. DOI: 10.1021/jp804413a.
21. Li L., Yao X., Li H., Liu Zh., Ma W., Liang X. J. Chem. Eng. Japan. 2014. V. 47. N 1. P. 21–27. DOI: 10.1252/ jcej.13we193.
22. Ivanova T.M., Maslakov K.I., Savilov S.V., Ivanov A.S., Egorov A.V., Linko R.V., Lunin V.V. Rus. Chem. Bull. Inter. Edit. 2013. V. 62. N 3. P. 640-645. DOI: 10.1007/ s11172-013-0086-1.
23. Yu X., Hantsche H. Fresenius J Anal Chem. 1993. V. 346. N 1. P. 233-236. DOI: 10.1007/BF00321421.
24. Weaver J.H., Martins J.L., Komeda T., Chen Y., Ohno T.R., Kroll G.H., Troullier N. Phys. Rev. Lett. 1991. V. 66. N 13. P. 1741-1744. DOI: 10.1103/PhysRevLett.66.1741.
25. Umeyama T., Tezuka N., Fujita M., Hayashi S., Kadota N., Matano Y., Imahori H. Chem. Eur. J. 2008. V. 14.
N 16. P. 4875-4885. DOI: 10.1002/chem.200702053

2016, Т. 59, № 8, Стр. 12-20

Purchase

You will get the pdf-copy of your article by e-mail