PREPARATION OF CELLULOSE DIACETATE MEMBRANES FOR SOLID-STATE FLUORESCENCE OF POLYCYCLIC AROMATIC HYDROCARBONS

DOI: 
10.6060/tcct.20165912.5476

Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2016. V. 59. N 12. P. 80-86
The investigation is devoted to the development of molding composition for cellulose diacetate (CDA) membranes preparation in order to use them as matrices for solid-surface fluorescence (SSF) of polycyclic aromatic hydrocarbons (PAH). Membranes were prepared under standard conditions by a dry method from CDA solutions with concentrations of 1.2–8.0 wt. % in acetone and a mixture of acetone and water (99:1 to 93:7). Pyrene was taken as a model PAH. It was adsorbed onto the membranes from water-ethanol solutions and its SSF was recorded. The best pyrene sorption and fluorescence was obtained with the CDA mem-branes made from the acetone-water (95:5 vol.) mixture with a polymer content of 3.6 wt. %. These membranes were compared with commercial filtering hydrophilic CDA membranes by the efficiency of pyrene sorption and SSF. In the range of pyrene concentrations in sorbate of 10-6–10-8 M the SSF signal was observed only for the laboratory sample. The surface en-ergy characteristics and the morphology of membranes were examined. It was shown that laboratory CDA membranes have the structure of a continuous, ‘‘lacy’’ polymer network with pore sizes within 100–500 nm, the commercial membranes are less dense and more permeable to solution, they have the pores by an order of magnitude greater, filled with a set of nodules. It was concluded that in order to get a pyrene fluorescence signal in the sorbent phase, a membrane should be finely porous, smooth, and not transparent. Laboratory CDA membranes were also modified by micellar solutions of surfactant TX-100. The highest SSF signal of pyrene was obtained with the modifier’s content in the forming solution of 0.26 wt. %. This modification allowed reducing the limit of pyrene detection by SSF down to a con-centration of 10-9 M. These matrices can be used to monitor the presence of PAH in aqueous media.
Key words: cellulose diacetate, membrane, polycyclic aromatic hydrocarbon, pyrene, solid-surface fluorescence
REFERENCES
1. Fischer S., Thümmler K., Volkert B., Hettrich K., Schmidt I., Fischer K. Properties and applications of cellulose acetate. Macro-mol. Symp. 2008. N 262. P. 89−96. DOI: 10.1002/masy.200850210.
2. Zhanga S., Wang K. Y., Chunga T.-Sh., Chenc H., Jeanc Y.C., Amyd G. Well-constructed cellulose acetate membranes for for-ward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer. J. Membrane Sci. 2010. V. 360. N 1–2. P. 522–535. DOI: 10.1016/j. memsci.2010.05.056.
3. Hea Y., Lia G.-M., Wanga H., Jianga Zh.-W., Zhaoa J.-F., Suc H.-X., Huangc Q.-Y. Experimental study on the rejection of salt and dye with cellulose acetate nanofiltration membrane. J. Taiwan Inst. Chem. Eng. 2009. V. 40. N 3.
P. 289–295. DOI: 10.1016/j.jtice.2008.08.008.
4. Verma N., Singh A.K. Development of biological oxygen demand biosensor for monitoring the fermentation industry effluent. ISRN Biotechnol. 2013. V. 2013 Article ID 236062. 6 p. DOI: 10.5402/2013/236062.
5. Rusli H., Gandasasmita S., Amran M.B., Gandasasmita S., Amran M.B. Cellulose acetate-silica fume membrane: characteriza-tion and application for separation of starch and maltose. Iran. Polym. J. 2013. V. 22. N 5. P. 335–340. DOI: 10.1007/s13726-013-0132-8.
6. Hurtubise R.J. Solid-matrix luminescence analysis: photophysics, physicochemical interactions and applications. Anal. Chim. Acta. 1997. V. 351. N 1–3. P. 1–22. DOI: 10.1016/ S0003-2670(97)00358-9.
7. Torre M., Sґanchez-Hernґandez M., Vera S., San Andrґes M.P. Improvement in retinol analysis by fluorescence and solid phase extraction (SPE) in micellar medium. J. Fluorescence. 2008. V. 18. N 2. P. 487–497. DOI: 10.1007/s10895- 007-0290-1.
8. Talio M.C., Alesso M., Acosta M., Acosta M.G., Luconi M.O., Fernґandez L.P. Caffeine monitoring in biological fluids by solid surface fluorescence using membranes modified with nanotubes. Clin. Chim. Acta. 2013. V. 425. P. 42–47. DOI: 10.1016/j.cca.2013.07.008.
9. Parashchenko I.I., Smirnova T.D., Shtykov S.N., Kochubei V.I., Zhukova N.N. Doxycycline-sensitized solid-phase fluores-cence of europium on silica in the presence of surfactants. J. Anal. Chem. 2013. V. 68. N 2. P. 112–116. DOI: 10.1134/S1061934813020123.
10. Plaza−Bolanos P., Frenicha A.G., Vidal J.L.M. Polycyclic aromatic hydrocarbons in food and beverages. Analytical methods and trends. J. Chromatogr. A. 2010. N 1217. P. 6303–6326. DOI: 10.1016/j.chroma.2010.07.079.
11. Saitoh T., Itoh H., Hiraide M. Admicelle-enhanced synchronous fluorescence spectrometry for the selective determination of poly-cyclic aromatic hydrocarbons in water. Talanta. 2009. N 79. P. 177−182. DOI: 10.1016/j.talanta.2009.03.022.
12. Wilson W.B., Costa A.A., Wang H., Campiglia A.D., Dias J.A., Dias S.C.L. Pre-concentration of water samples with BEA zeo-lite for direct determination of polycyclic aromatic hydrocarbons with laser-excited time-resolved Shpol’skii spectroscopy. Micro-chem. J. 2013. N 110, P. 246−255. DOI: 10.1016/j.microc.2013.04.001.
13. Bernier G., Lamotte M. Field monitoring of PAHs in river water by direct fluorimetry on C18 solid sorbent. Rapid Chemical and Biological Techniques for Water Monitoring. Quevauviller P, Greenwood R. (Eds). UK: Wiley. 2009. P. 275−280. DOI: 10.1002/9780470745427.ch4c.
14. Dmitrienko S.G., Gurariy E.Y., Nosov R.E., Zolotov Y.A. Solid-phase extraction of polycyclic aromatic hydrocarbons from aque-ous samples using polyurethane foams in connection with solid-matrix spectrofluorimetry. Anal. Lett. 2001. V. 34. N 3. P. 425–438. DOI: 10.1081/AL-100102584.
15. Vásquez V., Báez Contreras M. E., Fuentes Pérez E., Bravo M. Determination of heavy polycyclic aromatic hydrocarbons of concern in edible oils via excitation-emission fluorescence spectroscopy on nylon membranes coupled to unfolded partial least-squares/residual bilinearisation. Anal Bioanal Chem. 2013. N 405. P. 7497−7507. DOI: 10.1007/ s00216-013-7201-x.
16. Dyachuk O.A., Gubina T.I., Melnikov G.V. Adsorption preconcentration in the luminescence determination of polycyclic aromatic hydrocarbons. J. Anal. Chem. 2009. V. 64. N 1. P. 7–11. DOI: 10.1134/S106193480901002X.
17. Rogacheva S.M., Shipovskaya A.B., Strashko A.V., Gubina T.I., Volkova E.V., Melnikov A.G. Polysaccharide fibers as matri-ces for solid-surface fluorescence. Int. J. Polym. Sci. 2014. V. 2014. P. 1–9. DOI: 10.1155/2014/183413.
18. Shipovskaya A.B., Gubina T.I., Strashko A.V., Malinkina O.N. Cellulose diacetate films as a solid-phase matrix for fluorescence analysis of pyrene traces in aqueous media. Cellulose. 2015. V.22. N 2. P. 1321 – 1332. DOI: 10.1007/ s10570-015-0572-8.
19. Kesting R.Е. Synthetic polymeric membranes. Wiley-Interscience Public.; 2nd Edition. 1985. 368 p. DOI: 10.1007/ 978-94-009-4390-2_7.

2016, Т. 59, № 12, Стр. 80-86

Purchase

You will get the pdf-copy of your article by e-mail