DOI: 10.6060/tcct.20165912.5489
Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2016. V. 59. N 12. P. 93-99

The objective of the present study is to develop a model to describe the hydrodynam-ics, heat and mass transfer in a conical fluidized bed with particles of strongly variable prop-erties. The proposed model is based on the Markov chains approach, and the wet potato mono-sized cubes are used as the model material. Shrinkage of potato samples during the process of drying is taken into account to improve the adequacy of simulation. Thus, the three new factors that influence the process are taken into account: variation of the superfi-cial gas velocity over the bed height due to its conical shape, variation of particles mass due to drying and variation of particle size due to its shrinkage. The bed is presented as two par-allel chains of perfectly mixed cells: one chain for particulate solids, and one chain for the drying gas. The evolution of particulate solids distribution over its chain is describes with the matrix of transition probabilities, which is state dependent and varies with time. The heat and mass transfer between adjacent cells of the both chains is describes with the common rela-tions of heat and mass transfer. The model allows predicting the drying kinetics if the coeffi-cients of heat and mass transfer are known. The correlations to calculate the drag force coef-ficient, Nusselt and Sherwood numbers, the coefficients of shrinkage and of diffusivity were borrowed from literature. The model was validated at the lab scale fluidized bed dryer with the conical shape of reactor. A good agreement between obtained experimental and calculat-ed results is achieved.

Key words: fluidization, Markov chain, state vector, matrix of transition probabilities, drying, moisture content, kinetics

1. Ding J., Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow. AIChE J. 1990. N 36 (4). P. 523-538.
2. Kwauk M. Fluidization. Idealized and bubbleless, with applications. Beijing: Science Press. 1992. 277 p.
3. Van der Hoef M.A., van Sint Annaland M., Deen N.G., Kuipers J.A.M. Numerical simulation of dense gas-solid fluidized beds: A Multiscale modeling strategy. Annu. Rev. Fluid Mech. 2008. N 40. P. 47–70. DOI: 10.1146/annurev. fluid.40.111406.102130.
4. Goldschmidt M.J.V., Kuipers J.A.M., Van Swaaij W.P.N. Hydrodynamic modeling of dense gas-fluidized beds using the ki-netic theory of granular flow: Effect of coefficient of restitution on bed dynamics. Chem. Eng. Sci. 2001. N 56.
P. 571-578. DOI: 10.1016/S0009-2509(00)00262-1.
5. Duarte C.R., Olazar M., Murata V.V., Barrozo M.A.S. Numerical simulation and experimental study of fluid-particle flows in a spouted bed, Powd. tech. 2009. N 188 (3). P. 195-205.
6. Smith P.G. Applications of fluidization to food processing. UK: BlackWell science. 2007. 243 p.
7. Dehling H.G., Hoffmann A.C., Stuut H.W. Stochastic models for transport in a fluidised bed. SIAM J. Appl. Math. 1999. V. 60. P. 337–358. DOI: 10.1137/S0036139996306316.
8. Балагуров И.А., Мизонов В.Е., Митрофанов А.В. Математическая модель формирования многокомпонентной смеси сегрегирующих компонентов. Изв. Вузов. Химия и хим. технология. 2014. Т. 57. Вып. 8. С. 67-70.
9. Федосов С.В., Мизонов В.Е., Огурцов В.А. Моделирование классификации полидисперсных материалов на виброгрохо-тах. Строительные материалы. 2007. № 11. С. 26–29.
10. Mizonov V., Mitrofanov A., Ogurtzov A., Tannous K. Modeling of particle concentration distribution in a fluidized bed by means of the theory of Markov chains. Part. Sci. Technol. 2014. V. 32. N 2. P.171-178. DOI: 10.1080/02726351.2013.839016.
11. Mujumdar A.S. Handbook of Industrial Drying. New York: CRC Press; Taylor & Francis Group. 2006. 1312 p.
12. Spomer L.A., Tibbitts T.W. Humidity, in Plant Growth Chamber Handbook. R.W. Langhans and T.W. Tibitts (Ed.), Iowa State University of Science and Technology. 1997. P. 43-64.
13. Bird R.B., Steward W.E., Lightfood E.N. Transport Phenomena. New York: John Wiley & Sons, Inc. 2002. 1069 p.
14. Киселева Т.Ф. Технология сушки: Учебно-методиче-ский комплекс. Кемерово: Кемеровский технологический институт пищевой промышленности. 2007. 117 с.

2016, Т. 59, № 12, Стр. 93-99


You will get the pdf-copy of your article by e-mail