МОДИФИЦИРОВАНИЕ ТРЕКОВЫХ МЕМБРАН С ИСПОЛЬЗОВАНИЕМ НИЗКОТЕМПЕРАТУРНОЙ ПЛАЗМЫ

  • Lyubov’ I. Kravets Объединенный институт ядерных исследований
  • Alla B. Gilman Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН
Ключевые слова: трековые мембраны, модифицирование в низкотемпературной плазме, магнетронное распыление полимеров, электронно-лучевое диспергирование полимеров в вакууме, свойства поверхности, структура модифицированных мембран

Аннотация

Рассмотрены литературные данные по модифицированию трековых мембран с использованием низкотемпературной плазмы, появившиеся за последнее десятилетие. Представлены схемы, описания установок и методик для обработки образцов в разрядах различных типов в среде неполимеризующихся газов и методом полимеризации в плазме, а также под действием таких плазмохимических методов, как магнетронное распыление полимерной мишени и электронно-лучевое диспергирование полимеров в вакууме. Описаны современные физико-химические методы изучения изменений, происходящих на поверхности мембран. Приведены типичные примеры изменения контактных свойств поверхности трековых мембран и их химического состава, полученные с помощью методов рентгенофотоэлектронной спектроскопии и Фурье-ИК-спектроскопии. С использованием методов атомно-силовой микроскопии и электронной микроскопии представлены примеры морфологических изменений, происходящих на поверхности трековых мембран и в объеме пор. Показано, что модифицирование трековых мембран в низкотемпературной плазме приводит к созданию “умных” мембран, обладающих уникальными свойствами. Это позволяет значительно расширить области их применения. Такие мембраны могут быть использованы в качестве термочувствительных элементов и механохимических мембран с “химическим клапаном”. Обработка в плазме позволяет также существенно изменить биосовместимость поверхности трековых мембран и использовать их в медицине и биологии. С помощью специальных методик представлены исследования адсорбции и роста клеточных и биологических структур на поверхности модифицированных трековых мембран. Показана возможность использования трековых мембран в качестве высокоэффективного биосовместимого дренажного материала при хирургическом лечении рефрактерной глаукомы, а также в виде имплантатов при лечении буллезной кератопатии.

Для цитирования:

Кравец Л.И., Гильман А.Б. Модифицирование трековых мембран с использованием низкотемпературной плазмы.Изв. вузов. Химия и хим. технология. 2018. Т. 61. Вып. 4-5. С. 4-30

Литература

Mchedlishvili B.V., Flerov G.N. Nuclear filters: a new class of microfiltration membranes in precision division of colloidal solu-tions. Ros. Khim. Zhurn. 1987. V. 32. N 6. P. 641-647 (in Russian).

Track membranes: synthesis, structure, properties and applications. Ed. by P.Yu. Apel, B.V. Mchedlishvili. M.: 2004. 172 p. (in Russian).

Apel P.Yu., Dmitriev S.N. Micro- and nanoporous materials produced using accelerated heavy ion beams. Advances in Natural Sciences  Nanoscience and Nanotechnology. 2011. V. 2. N 013002. DOI: 10.1088/2043-6262/2/1/013002.

Berezkin V.V., Vasilev A.B., Vilensky A.I., Mchedlishvili B.V. About track membranes. Priroda. 2013. N 11. P. 37-44 (in Russian).

Price P.B., Walker R.M. Molecular sieves and method for producing same. Pat. USA. N 3303085. 1962.

Flerov G.N. Synthesis of superheavy elements and application of physics methods in adjacent. Vestn. Akademii Nauk SSSR. 1984. N 4. P 35-48 (in Russian).

Nazarov V.G. Surface modification of polymers. M.: MGUP. 2008. 474 p. (in Russian).

Garbassi F., Morra M., Ochiello E. Polymer surface from physics to technology. New York: John Wiley & Sons Inc. 1994. 594 p.

Shataeva L.K., Ryadnova I.Yu., Nechaev A.N., Sergeev A.V., Chikhacheva I.P., Mchedlishvili B.V. Features of wetting and adsorbtion properties of track membranes on a basis of poly(ethylene terephthalate). Colloid J. 2000. V. 62. N 1. P. 126-132 (in Russian).

Solov’ev A.Yu., Ryadnova I.Yu., Shataeva L.K. Modification of poly(ethylene terephthalate) track membranes by sorption of poly(ethylene glycol). Russ. J. Appl. Chem. 2002. V. 75. N 9. P. 1453-1457. DOI: 10.1023/A:1022285114052.

Vakulyuk P.V., Burban A.F., Bryk M.T., Mchedlishvili B.V. Influence of modification of track membranes by oligomeric bianchor compounds on their separation characteristics. Kritich. Tekhnol. Membrany. 2003. N 17. P. 9-15 (in Russian).

Mitrofanova N.V., Nechaev A.N., Khokhlova T.D., Mchedlishvili B.V. Protein and dye adsorption on poly(ethylene tereph-thalate) nucleopore membranes modified with polymers. Colloid. J. 2003. V. 65. N 2. P. 222-225. DOI: 10.1023/A:1023377410961.

Khokhlova T.D., Apel P.Yu., Zhdanov G.S., Berezkin V.V., Vasilev A.B., Mchedlishvili B.V. Adsorption and surface prop-erties of traditional and asymmetric poly(ethylene terephthalate) track membranes modified by polyimines and polivinilpirrolidon. Kritich. Tekhnol. Membrany. 2006. N 30. P. 11-16 (in Russian).

Nechaev A.N., Apel P.Yu., Cherkasov A.N., Polotskii A.E., Pervov N.V., Trofimov D.A., Sergeev A.V., Mchedlishvili B.V. High-effective track ultrafiltration membranes. Kritich. Tekhnol. Membrany. 2003. N 4. P. 18-22 (in Russian).

Sergeev A.V., Nechaev A.N., Pervov N.V., Vlasov A.V., Mchedlishvili B.V. Track membranes as an element of template syn-thesis of nanostructures. I. Modified track membranes. Kritich. Tekhnol. Membrany. 2004. N 1. P. 19-28 (in Russian).

Lue Sh. J., Hsu J.-J., Chen Ch.-H., Chen B.-Ch. Thermally on-off switching membranes of poly(N-isopropylacrylamide) im-mobilized in track-etched polycarbonate films. J. Membr. Sci. 2007. V. 301. N 1-2. P. 142-150. DOI: 10.1016/j.memsci.2007.10.048.

Alem H., Duwez A-S., Lussis P., Lipnik P., Jonas A.M., Demoustier-Champagne S. Microstructure and thermo-responsive behavior of poly(N-isopropylacrylamide) brushes grafted in nanopores of track-etched membranes. J. Membr. Sci. 2008. V. 308. N 1-2. P. 75-86. DOI: 10.1016/j.memsci.2007.09.036.

Rattan S., Sehgal T. Stimuli-responsive polymeric membranes through graft copolymerization of N-Isopropylacrylamide onto polycarbonate track etched membranes for biomedical applications. Procedia Chem. 2012. V. 4. P. 194-201. DOI: 10.1016/j.proche.2012.06.027.

Soto Espinoza S.L., Arbeitman C.R., Clochard M.C., Grasselli M. Functionalization of nanochannels by radio-induced graft-ing polymerization on PET track-etched membranes. Rad. Phys. Chem. 2014. V. 94. P. 72-75. DOI: 10.1016/j.radphyschem.2013.05.043.

Barsbay M., Güven O. Grafting in confined spaces: Functionalization of nanochannels of track-etched membranes. Rad. Phys. Chem. 2014. V. 105. P. 26-30. DOI: 10.1016/j.radphyschem.2014.05.018.

Yang B., Yang W. Thermo-sensitive switching membranes regulated by pore-covering polymer brushes. J. Membr. Sci. 2003. V. 218. N 1-2. P. 247-255. DOI: 10.1016/S0376-7388(03)00182-0.

Yang B., Yang W. Novel pore-covering membrane as a full open/close valve. J. Membr. Sci. 2005. V. 258. N 1-2. P. 133-139. DOI: 10.1016/j.memsci.2005.03.013.

He D., Susanto H., Ulbricht M. Photo-irradiation for preparation, modification and stimulation of polymeric membranes. Progr. Polym. Sci. 2009. V. 34. N 1. P. 62-98. DOI: 10.1016/j.progpolymsci.2008.08.004.

Korolkov I.V., Mashentseva A.A., Güven O., Taltenov A.A. UV-induced graft polymerization of acrylic acid in the sub-micronchannels of oxidized PET track-etched membrane. Nucl. Instr. Meth. B. 2015. V. 365. P. 419-423. DOI: 10.1016/j.nimb.2015.07.057.

Korolkov I.V., Mashentseva A.A., Güven O., Niyazova D.T., Barsbay M., Zdorovets M.V. The effect of oxidizing agents/systems on the properties of track-etched PET membranes. Polym. Degrad. Stab. 2014. V. 107. P. 150-157. DOI: 10.1016/j.polymdegradstab.2014.05.008.

Hiroki A., Yoshida M., Nagaoka N., Asano M., Reber N., Spohr R., Kubota H., Katakai R. Permeation of p-nitrophenol through N-isopropylcrylamide-grafted etched-track membrane close to theta-point temperature. Rad. Effects Defects Solids. 1999. V. 147. N 3. Р. 165-175. DOI: 10.1080/10420159908229006.

Shtanko N.I., Kabanov V.Ya., Apel P.Yu., Yoshida M., Vilenskii A.I. Preparation of permeability-controlled track mem-branes based on “smart” polymers. J. Membr. Sci. 2000. V. 179. N 1-2. P. 155-161. DOI: 10.1016/S0376-7388(00)00494-4.

Ermolaev S.V., Jitariouk N., Le Moël A. Polymerization of pyrrole onto track-etched membranes. Nucl. Istrum. Meth. B. 2001. V. 185. P. 184-191. DOI: 10.1016/S0168-583X(01)00780-7.

Zhdanov G.S., Kitaeva N.K., Bannova E.A., Minyailo L.V. The main approaches to the modification of track membranes from poly(ethylene terephthalate). Kritich. Tekhnol. Membrany. 2004. N 2. P. 3-8 (in Russian).

Bessbousse H., Zran N., Fauléau J., Godin B., Lemee V., Wade T., Clochard M.-C. Poly(4-vinyl pyridine) radiografted PVDF track etched membranes as sensors for monitoring trace mercury in water. Rad. Phys. Chem. 2016. V. 118. P. 48-54. DOI: 10.1016/j.radphyschem.2015.03.011.

Kravets L.I., Dmitriev S.N., Apel P.Yu. Production and properties of polypropylene track membranes. Khimiya Vysokikh Ener-gii. 1997. V. 31. N. 2. P. 108-113 (in Russian).

Friedrich J. The plasma chemistry of polymer surfaces: advanced techniques for surface design. Weinheim: Wiley. 2012. 473 р.

Modification of polymer properties. Ed. by C.F. Jasso-Gastinel, J.M. Kenny. Oxford (UK): William Andrew. 2016. 232 p.

Gilman A.B. Low-temperature plasma treatment as an effective method for surface modification of polymeric materials. High En-ergy Chemistry. 2003. V. 37. N 1. P. 17-23. DOI: 10.1023/A:1021957425359.

Kravets L.I., Dmitriev S.N., Gilman A.B. Modification of properties of polymer membranes by low-temperature plasma treat-ment. High Energy Chemistry. 2009. V. 43. N 3. P. 181-188. DOI: 10.1134/S0018143909030059.

Bryjak M., Gancarz I., Smolinska K. Plasma nanostructuring of porous polymer membranes. Adv. Coll. Interf. Sci. 2010. V. 161. N 1-2. P. 2-9. DOI: 10.1016/j.cis.2010.09.004.

Bryjak M., Gancarz I. Membrane prepared via plasma modification. In Membranes for membrane reactors: preparation, optimiza-tion and selection. Eds. A. Basile, F. Gallucci. Chichester (UK): John Wiley & Sons. 2011. Ch 25. P. 549.

Kravets L.I., Gilman A.B., Dinescu G. Modification of polymer membrane properties by low-temperature plasma. Rus. J. Gener. Chem. 2015. V. 85. N. 5. P. 1284-1301. DOI: 10.1134/S107036321505045X.

Cai, T., Neoh, K.-G., Kang, E.-T. Functionalized and functionalizable fluoropolymer membranes. In: Handbook of fluoropoly-mer science and technology. Eds. D.W. Smith, S.T. Iacono, S.S. Iyer. Hoboken (USA): John Wiley & Sons. 2014. Ch. 8. P. 149.

Kravets L., Dmitriev S., Dinescu G., Sleptsov V., Elinson V. Modification of poly(ethylene terephthalate) track membrane properties by plasma chemical methods. Mater. Sci. Forum. 2010. V. 636-637. P. 805-811. DOI: 10.4028/www.scientific.net/MSF.636-637.805.

Dmitriev S.N., Kravets L.I., Sleptsov V.V. Modification of track membranes structure by plasma etching. Nucl. Instr. Meth. B. 1998. V. 142. N 1-2. P. 43-49. DOI: 10.1016/S0168-583X(98)00203-1.

Kravets L.I., Dmitriev S.N., Sleptsov V.V., Elinson V.M. Production of asymmetric track membranes with a high permeability and separation selectivity. Desalination. 2002. V. 144. P. 27-34. DOI: 10.1016/S0011-9164(02)00284-9.

Dmitriev S.N., Kravets L.I., Sleptsov V.V., Elinson V.M. Water permeability of modified poly(ethylene terephthalate) track membranes modified in plasma. Desalination. 2002. V. 146. P. 279-286. DOI: 10.1016/S0011-9164(02)00487-3.

Kravets L.I., Dmitriev S.N., Sleptsov V.V., Elinson V.M. Production of asymmetric track membranes by gas-discharge meth-od. Surf. Coat. Techn. 2003. V. 174-175. P. 821-825. DOI: 10.1016/S0257-8972(03)00627-3.

Lazea A., Kravets L.I., Albu B., Ghica C., Dinescu G. Modification of polyester track membranes by plasma treatments. Surf. Coat. Techn. 2005. V. 200. P. 529-533. DOI: 10.1016/j.surfcoat.2005.01.120.

Kravets L.I., Dmitriev S.N., Dinescu G., Lazea A., Sleptsov V.V., Elinson V.M. Plasma-chemical modification of structure and properties of poly(ethylene terephthalate) track membranes. J. Phys. Conf. Ser. 2007. V. 63. N 012032. DOI: 10.1088/1742-6596/63/1/012032.

Dinescu G., Lazea A., Kravets L., Dmitriev S. Morfological, chemical and permeation characteristics modified polymeric track membranes. J. Optoelectrоn. Adv. Mater. 2007. V. 9. N 6. P. 1645-1648.

Kravets L., Dmitriev S., Dinescu G., Lazea A., Satulu V. Effect of plasma treatment on polymer track membranes. Plasma Process. Polym. 2009. V. 6. Suppl. 1. P. 796-802. DOI: 10.1002/ppap.200932002.

Tompkins B.D., Dennison J.M., Fisher E.R. H2O plasma modification of track-etched polymer membranes for increased wetta-bility and improved performance. J. Membr. Sci. 2013. V. 428. P. 576-588. DOI: 10.1016/j.memsci.2012.10.037.

Kravets L., Gilman A., Yablokov M., Elinson V., Mitu B., Dinescu G. Surface and electrochemical properties of plasma-treated polypropylene track membrane. Plasma Process. Polym. 2013. V. 10. N 7. Р. 603-618. DOI: 10.1002/ppap.201200084.

Tompkins B.D., Dennison J.M., Fisher E.R. Etching and post-treatment surface stability of track-etched polycarbonate mem-branes by plasma processing using various related oxidizing plasma systems. Plasma Process. Polym. 2014. V. 11. N 9. P. 850-863. DOI: 10.1002/ppap.201400044.

Hamerli P., Weigel Th., Groth Th., Paul D. Surface properties of and cell adhesion onto allylamine-plasma-coated poly(ethylene terephthalate) membranes. Biomaterials. 2003. V. 24. P. 3989-3999. DOI: 10.1016/S0142-9612(03)00312-0.

Lazea A., Kravets L.I., Dmitriev S.N., Dinescu G. Deposition of acrylic acid plasma polymer onto poly(ethylene terephthalate) nuclear track membranes. Rom. Rep. Phys. 2005. V. 57. N 3. P. 396-400.

Kravets L.I., Dmitriev S.N., Drachev A.I., Gilman A.B., Lazea A., Dinescu G. Controlled change of transport properties of poly(ethylene terephthalate) track membranes by plasma method. J. Phys. Conf. Ser. 2007. V. 63. N 012031. DOI: 10.1088/1742-6596/63/1/012031.

Chapman Ch.L., Bhattacharyya D., Eberhart R.C., Timmons R.B., Chuong Ch.-J. Plasma polymer thin film depositions to regulate gas permeability through nanoporous track etched membranes. J. Membr. Sci. 2008. V. 318. N 1-2.

P. 137-144. DOI: 10.1016/j.memsci.2008.02.030.

Trofimov D.A., Shkinev V.M., Spivakov B.Ya., Schuе F. Improvement of pore geometry and performances of poly(ethylene terephthalate) track membranes by a protective layer method using plasma-induced graft polymerization of 1H,1H,2H-perfluoro-1-octene monomer. J. Membr. Sci. 2009. V. 326. N 2. P. 265-269. DOI: 10.1016/j.memsci.2008.10.057.

Kravets L.I., Dmitriev S.N., Satulu V., Mitu B., Dinescu G. Preparation of polymeric composite nanomembranes with conduc-tivity asymmetry. Rus. J. Appl. Chem. 2010. V. 83. N 9. P. 1628-1635. DOI: 10.1134/S1070427210090223.

Kravets L.I., Dmitriev S.N., Altynov V.A., Satulu V., Mitu B., Dinescu G. Synthesis of bilayer composite nanomembranes with conductivity asymmetry. Rus. J. Electrochem. 2011. V. 47. N 4. P. 470-481. DOI: 10.1134/S1023193511040094.

Kravets L.I., Dmitriev S.N., Satulu V., Mitu B., Dinescu G. Fabrication and electrochemical properties of polymer bilayered membranes. Surf. Coat. Techn. 2011. V. 205. Suppl. 2. P. 455-461. DOI: 10.1016/j.surfcoat.2011.04.013.

Kravets L., Dmitriev S., Lizunov N., Satulu V., Mitu B., Dinescu G. Properties of poly(ethylene terephthalate) track mem-branes with a polymer layer obtained by plasma polymerization of pyrrole vapors. Nucl. Instr. Meth. B. 2010. V. 268. N 5. Р. 485-492. DOI: 10.1016/j.nimb.2009.11.014.

Kravets L., Dmitriev S., Dinescu G., Satulu V., Gilman A., Yablokov M. Polymer composite nanomembranes with asym-metry of conductivity. Mater. Sci. Forum. 2010. V. 636-637. P. 812-818. DOI: 10.4028/www.scientific.net/MSF.636-637.812.

Kravets L.I., Dmitriev S.N., Goryacheva T.A., Satulu V., Mitu B., Dinescu G. Structure and electrochemical properties of track membranes modified by tetrafluoroethane plasma. Membr. Membr. Technol. 2011. V. 1. N 2. P. 126-138 (in Russian).

Cökeliler D. Enhancement of polycarbonate membrane permeability due to plasma polymerization precursors. Appl. Surf. Sci. 2013. V. 268. P. 28-36. DOI: 10.1016/j.apsusc.2012.11.136.

Kravets L.I., Dmitriev S.N., Satulu V., Mitu B., Dinescu G. Formation of composite polymer ‘diode-like’ membranes. Roman. Rep. Phys. 2014. V. 66. N 4. Р. 1165-1179.

Kravets L.I., Dmitriev S.N., Satulu V., Mitu B., Dinescu G. Structure and electrochemical properties of track membranes with a polymer layer obtained by plasma polymerization of acetylene. J. Phys. Conf. Ser. 2014. V. 516. N 012006. DOI: 10.1088/1742-6596/516/1/012006.

Kravets L.I., Gilman A.B., Satulu V., Mitu B., Dinescu G. Formation of diode-like membranes by polymerization in plasma. Perspect. Mater. 2017. V. 9. P. 5-21 (in Russian).

Trofimov D.A., Shkinev V.M., Spivakov B.Ya. Modification of the surface and pores of poly(ethylene terephthalate) track membranes using N-isopropylacrylamide for an improvement of membrane performances. Mendeleev Com. 2017. V. 27.

N 1. Р. 44-46. DOI: 10.1016/j.mencom.2017.01.013.

Gancarz I., Duraj I., Bryjak M. Bipolar nanofiltration membranes based on plasma modified microfilters. J. Appl. Polym. Sci. 2014. V. 131. N 2. N 39790. DOI: 10.1002/app.39790.

Gancarz I., Bryjak M., Kujawski J., Wolska J., Kujawa J. Plasma deposited fluorinated films on porous membranes. Mater. Chem. Phys. 2015. V. 151. Р. 233-242. DOI: 10.1016/j.matchemphys.2014.11.059.

Kravets L.I., Gilman A.B., Yablokov M.Yu., Satulu V., Mitu B., Dinescu G. A novel technique for fabrication of nanofluidic devices with polymer formed by plasma. High Temp. Mater. Proc. 2015. V. 19. N 1. P. 1-18. DOI: 10.1615/HighTempMatProc.2015015712.

Kravets L.I., Altynov V.A., Zagonenko V.F., Lizunov N.E., Satulu V., Mitu B., Dinescu G. Composite two-layer mem-branes containing hydrophobic polymer layers. Perspect. Mater. 2018. N 1. P. 5-16 (in Russian).

Toufik M., Mas A., Shkinev V., Nechaev A., Elharfi A., Schue F. Improvement of performances of PET track membranes by plasma treatment. Euroр. Polym. J. 2002. V. 38. N 2. P. 203-209. DOI: 10.1016/S0014-3057(01)00130-6.

Dmitriev S.N., Kravets L.I., Sleptsov V.V., Elinson V.M. Plasma-induced graft polyme¬rization of poly-2-methyl-5-vinylpyridine on the surface of poly(ethylene terephthalate) track membranes. Polym. Degrad. Stab. 2005. V. 90. P. 374-378. DOI:10.1016/j.polymdegradstab.2004.11.026.

Lue Sh. J., Hsu J.-J., Wei T.-Ch. Drug permeation modeling through the thermo-sensitive membranes of poly(N-isopropylacrylamide) brushes grafted onto micro-porous films. J. Membr. Sci. 2008. V. 321. N 2. P. 146-154. DOI: 10.1016/j.memsci.2008.04.053.

Li Ch., Cao B., Wang W., Li Q., Zhao J., Zhang L. pH-induced on-off switching of polycarbonate track-etched membranes by plasma-induced surface grafting. Polym. Adv. Techn. 2010. V. 21. N 10. Р. 698-703. DOI: 10.1002/pat.1485.

Baumann L., Hegemann D., Courten D., Wolf M., Rossi R., Meier W.P., Scherer L.J. Tuning the resistance of polycarbonate membranes by plasma-induced graft surface modification. Appl. Surf. Sci. 2013. V. 268. P. 450-457. DOI: 10.1016/j.apsusc.2012.12.125.

Smolinska K., Bryjak M., Wolska J., Kujawski W. pH-sensitive membranes for lithium separation. Mater. Chem. Phys. 2014. V. 148. N 3. Р. 548-553. DOI: 10.1016/j.matchemphys.2014.08.003.

Kravets L.I., Gilman A.B., Drachev A.I. A study on the water permeability of poly(ethylene terephthalate) track membranes modified by DC discharge plasma polymerization of dimethylaniline. High Energy Chemistry. 2005. V. 39. N 2. P. 114-122. DOI: 10.1007/s10733-005-0023-4.

Kravets L., Dmitriev S., Gilman A., Drachev A., Dinescu G. Water permeability of poly (ethylene terephthalate) track mem-branes modified by DC discharge plasma polymerization of dimethylaniline. J. Membr. Sci. 2005. V. 263. N 1-2. P. 127-136. DOI: 10.1016/j.memsci.2005.04.012.

Kravets L., Dmitriev S., Drachev A., Gilman A., Demidova E., Dinescu G. Properties of diode-like membranes produced by plasma method. Mold. J. Phys. Sci. 2007. V. 6. N 1. Р. 110-116.

Satulu V., Mitu B., Altynov V.A., Lizunov N.E., Kravets L., Dinescu G. Synthesis and characterization of porous composite membranes with hydrophilic/hydrophobic sides based on the PTFE layers deposited by magnetron sputtering. Thin Solid Films. 2017. V. 630. P. 92-99. DOI: 10.1016/j.tsf.2016.08.052.

Yablokov M.Yu., Gilman A.B., Kravets L.I., Demina T.C. Creation of composite materials by application of nanoscale coat-ings by electron-beam dispersion of polymers in vacuum. Vacuum equipment, materials and technologies. Ed. by S.B. Nesterov. M.: Novella. 2016. P. 200-203 (in Russian).

Kravets L.I., Yablokov M.Yu., Gilman A.B., Shchegolikhin A.N., Mitu B., Dinescu G. Micro- and nanofluidic diodes based on track-etched poly(ethylene terephthalate) membrane. High Energy Chemistry. 2015. V. 49. N 5. P. 367-374. DOI: 10.1134/S0018143915050070.

Kravets L.I., Gilman A.B., Yablokov M.Yu., Altynov V.A., Orelovitch O.L. Formation of composite membranes containing hydrophobic polymer layers by electron-beam sputter deposition. High Energy Chemistry. 2016. V. 50. N 6. P. 460-465. DOI: 10.1134/S0018143916060102.

Kravets L.I., Gilman A.B., Yablokov M.Yu., Shchegolikhin A.N., Mitu B., Dinescu G. Properties of poly(ethylene tereph-thalate) track membrane with a polymer layer obtained by electron beam dispersion of polytetrafluoroethylene in vacuum. High Temp. Mater. Proc. 2015. V. 19. N 2. P. 121-139. DOI: 10.1615/HighTempMatProc.2016016073.

Kravets L.I., Gilman A.B., Yablokov M.Yu., Altynov V.A., Zagonenko V.F. Composite membranes with the hydrophobic and hydrophilic layers. J. Phys. Conf. Ser. 2018. V. 982. N 012010. DOI: 10.1088/1742-6596/982/1/012010.

Kravets L.I., Gilman A.B., Yablokov M.Yu. Preparation of metal-polymer composite membranes with conductance asymmetry. Petroleum Chemistry. 2011. V. 51. N 8. P. 634-643. DOI: 10.1134/S0965544111080056.

Pronin V.A., Gornov V.N., Lipin A.V., Loboda P.A., Mchedlishvili B.V., Nechaev A.N., Sergeev A.V. Ion-beam modifica-tion of track membrane surface. Technical Physics. 2001. V. 46. N 11. P. 1444-1447. DOI: 10.1134/1.1418510.

Pronin V.A., Gornov V.N., Lipin A.V., Loboda P.A., Mchedlishvili B.V., Nechaev A.N., Sergeev A.V. Ion deposition modi-fies the surface of track membranes. Technical Physics Letters. 2002. V. 28. N 1. P. 4-5. DOI: 10.1134/1.1448625.

Khlebnikov N.A., Polyakov E.V., Borisov S.V., Shepatkovskii O.P., Grigorov I.G., Kuznetsov M.V., Smirnov S.V., Mitro-fanov P.P. Modification of track membranes by application of inorganic coatings by ion-plasma sputtering. Kritich. Tekhnol. Membrany. 2010. N 2. P. 15-24 (in Russian).

Artoshina O.V., Rossouw A., Semina V.K., Nechaev A.N., Apel P.Yu. Structural and physicochemical properties of titanium dioxide thin films obtained by reactive magnetron sputtering, on the surface of track-etched membranes. Petroleum Chemistry. 2015. V. 55. N 10. P. 759-768. DOI: 10.1134/S0965544115100011.

Artoshina O.V., Milovich F.O., Rossouw A., Gorbarg B.L., Iskhakova L.D., Ermakov R.P., Semina V.K., Kochnev Y.K., Nechaev A.N., Apel P.Yu. Structure and phase composition of thin TiO2 films grown on the surface of metallized track-etched polyethylene terephthalate membranes by reactive magnetron sputtering. Inorganic Mater. 2016. V. 52. N 9. P. 945-954. DOI: 10.1134/S0020168516080021.

Advances in contact angle, wettability and adhesion. V. 1. Ed. by K.L. Mittal Cambridge: Scrivener Publishing LLC. 2013. 424 p.

Quere D. Rough ideas on wetting. Physica A. 2002. V. 313. P. 32-46. DOI: 10.1016/S0378-4371(02)01033-6.

Ishino C., Okumura K., Quere D. Wetting transitions on rough surfaces. Europhys. Lett. 2004. V. 68. P. 419-425. DOI: 10.1209/epl/i2004-10206-6.

Fischer B.E., Spohr R. Production and use of nuclear tracks imprinting structure in solid. Rev. Modern Phys. 1983. V. 55. N 4. P. 907-948. DOI: 10.1103/RevModPhys.55.907.

Apel P.Yu., Korchev Yu.E., Siwy Z., Spohr R., Yoshida M. Diode-like single-ion track membrane prepared by electro-stopping. Nucl. Instr. Meth. B. 2001. V. 184. N 3. P. 337-346. DOI: 10.1016/S0168-583X(01)00722-4.

Apel P.Yu., Kolikov V.M., Kuznetsov V.I., Mchedlishvili B.V., Potokin I.L., Samoilova L.I. Porous structure, selectivity and performance of nuclear filters with ultra-thin selective layer. Colloid J. 1985. V. 47. P. 772-776 (in Russian).

Dmitriev S.N., Kravets L.I., Sleptsov V.V., Elinson V.M., Potryasai V.V., Orelovich O.L. A high-frequency plasma-discharge effect of on poly(ethylene terephthalate) films exposed to heavy ions. Nucl. Instr. Meth. B. 2000. V. 171. N 4. P. 448-454. DOI: 10.1016/S0168-583X(00)00298-6.

Nechaev A.N., Berezkin V.V., Vilensky A.I., Zhdanov G.S., Karpukhina L.G., Kudoyarov M.F., Miterev A.M., Mitro-fanova N.V., Pronin V.A., Tsyganova T.V., Mchedlishvili B.V. Asymmetric track membranes. Kritich. Tekhnol. Membrany. 2000. N 6. P. 17-25 (in Russian).

Apel P.Yu., Dmitriev S.N., Root D., Vutsadakis V. A novel approach to particle track etching: surfactant-enhanced control of pore morphology. Particles Nuclei. Letters. 2000. N 4. P. 69-74.

Apel P.Yu., Dmitriev S.N. Optimization of the track membranes pore shape. Kritich. Tekhnol. Membrany. 2004. N 3. P. 32-37 (in Russian).

Kuvaldina E.V., Rybkin V.V., Terekhina E.A., Titov V.A. Probability and rate constant for the chemical interaction of atomic oxygen with poly(ethylene terephthalate) film. Khimiya Vysokikh Energii. 1994. V. 28. N 4. P. 359-360 (in Russian).

Kuvaldina E.V., Rybkin V.V., Terekhina E.A., Titov V.A. Kinetic lows of poly(ethylene terephthalate) etching in oxygen plasma. Khimiya Vysokikh Energii. 1994. V. 28. N 5. P. 422-425 (in Russian).

Vilensky A.I., Berezkin V.V., Mchedlishvili B.V. Modification of track membranes in a glow discharge plasma. Colloid J. 1991. V. 53. N 1. P. 117-120 (in Russian).

Scanning probe microscopy and spectroscopy: theory, techniques, and applications. Ed. by Dawn Bonnell. 2001. Cambridge: Wiley. 516 p.

Mironov V.L. Fundamentals of scanning probe microscopy. Nizhnii Novgorod: IFM RAS. 2004. 114 p. (in Russian).

Kuptsov A.H., Zhizhin G.N. Handbook of fourier transform raman and infrared spectra of polymers. M.: Fizmatlit. 2001. 656 p. (in Russian).

Yasuda H. Plasma Polymerization. M.: Mir. 1988. 376 p. (in Russian).

Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy. Ed. by D. Briggs, J.T. Grant. Chichester: IM Publ. 2003. 505 p.

Beamson G., Briggs D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database. Chichester: John Wiley. 1992. 295 p.

Hufner S. Photoelectron Spectroscopy: Principles and Applications. N-Y: Springer. 2003. 684 p.

Apel P.Yu., Kravets L.I. Degradation of poly(ethylene terephthalate) under irradiation with high energy heavy ions: yield and concentration of carboxylic end-groups. Khimiya Vysokikh Energii. 1991. V. 25. N 2. P. 138-143 (in Russian).

Mafe S., Ramirez P. Electrochemical characterization of polymer ion-exchange bipolar membranes. Acta Polymer. 1997. V. 48. N 7. P. 234-250. DOI: 10.1002/actp.1997.010480702.

Alcaraz A., Ramirez P., Mafe S., Holdik H., Bauer B. Ion selectivity and water dissociation in polymer bipolar membranes stud-ied by membrane potential and current–voltage measurements. Polymer. 2000. V. 41. P. 6627-6634. DOI: 10.1016/S0032-3861(99)00886-1.

Bockris J.O’M., Minevski L.V. About the mechanism of the passivity of aluminium and its alloys. J. Electroanal. Chem. 1993. V. 349. N 1-2. P. 375-414. DOI: 10.1016/0022-0728(93)80186-L.

Fulinski A., Kosinska I., Siwy Z. Transport properties of nanopores in electrolyte solutions: the diffusional model and surface currents. New J. Phys. 2005. V. 7. N 132. DOI: 10.1088/1367-2630/7/1/132.

Ramirez P., Apel P.Yu., Cervera J., Mafe S. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties. Nanotechnology. 2008. V. 19. N 315707. DOI: 10.1088/0957-4484/19/31/315707.

Ali M., Yameen B., Cervera J., Ramirez P., Neumann R., Ensinger W., Knoll W., Azzaroni O. Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and experiment. J. Am. Chem. Soc. 2010. V. 132. P. 8338-8348. DOI: 10.1021/ja101014y.

Apel P.Yu., Blonskaya I.V., Orelovitch O.L., Sartowska B.A., Spohr R. Asymmetric ion track nanopores for sensor technol-ogy. Reconstruction of pore profile from conductometric measurements. Nanotechnology. 2012. V. 23. N 225503. DOI: 10.1088/0957-4484/23/22/225503.

Vinogradova O.I., Yakubov G.E. Surface roughness and hydrodynamic boundary conditions. Phys. Rev. E. 2006. V. 73. N 045302. DOI: 10.1103/PhysRevE.73.045302.

Rothstein J.P. Slip on superhydrophobic surfaces. Ann. Rev. Fluid Mech. 2010. V. 42. P. 89-109. DOI: 10.1146/annurev-fluid-121108-145558.

Khokhlov A.R, Dormidontova E.E. Self-organization in ion-containing polymer systems. Phys. Usp. 1997. V. 40.

P. 109-124. DOI: 10.1070/PU1997v040n02ABEH000191.

Xie R., Chu L.Y., Chen W.M., Xiao W., Wang H.D., Qu J.B. Characterization of microstructure of poly(N-isopropylacrylamide)-grafted polycarbonate track-etched membranes prepared by plasma-graft pore-filling polymerization. J. Membr. Sci. 2005. V. 258. N 1-2. P. 157-166. DOI: 10.1016/j.memsci.2005.03.012.

Trofimov D.A., Danilova T.V., Shkinev V.M., Spivakov B.Ya., Mchedlishvili B.V. Plasma modification of track membranes by N-isopropylacrylamide. Kritich. Tekhnol. Membrany. 2009. N 43. P. 9-15 (in Russian).

Apel P.Yu., Dmitriev S.N. Track membranes. In: Membranes and membrane technologies. Ed. by A.B. Yaroslavtsev. M.: Nauchnyi Mir. 2013. 612 p. (in Russian).

Fatiyants E.Kh., Berezkin V.V., Kagramanov G.G. Methods for modification of track-etched membranes designed for separa-tion of biological objects. Petroleum Chemistry. 2013. V. 53. N 7. P. 471-481. DOI: 10.1134/S0965544113070074.

Ryazantseva T.V., Kravets L.I. RF Patent N 2434614. 2011. Explantations for antiglaucomatous interventions.

Ryazantseva T.V., Kravets L.I., Elinson V.M. Use of polymer track membranes with nanostructured surface as drainage in antiglaucomatous operations. Surf. Coat. Technol. 2011. V. 205. Suppl. 2. P. 562-566. DOI: 10.1016/j.surfcoat.2011.03.083.

Ryazantseva T.V., Kravets L.I., Elinson V.M. Plasma nanostructuring of the surface layer in track membranes for producing a highly efficacious biocompatible explantodrainage for the surgical management of refractory glaucoma. Inorg. Mater. Appl. Res. 2012. V. 3. N 5. P. 408-416. DOI: 10.1134/S2075113312050140.

Ryazantseva T.V., Kravets L.I. RF Patent N 2 557 915. 2015. Implant for revascularization of the posterior pole of the eye in patients with glaucoma.

Filippova E.O., Sokhoreva V.V., Pichugin V.F., Potential use of nuclear track membranes in ophthalmology. Petroleum Chemis-try. 2014. V. 54. N 8. P. 669-672. DOI: 10.1134/S0965544114080039.

Filippova E.O., Karpov D.A., Gradoboev A.V., Sokho-reva V.V., Pichugin V.F. Influence of low-temperature plasma and γ-radiation on the surface properties of PET track membranes. Inorg. Mater. Appl. Res. 2016. V. 7. N 5. P. 484-492. DOI: 10.1134/S2075113316050063.

Filippova E.O., Calanda N.S., Pichugin V.F., Aleinik A.N., Guriev A.M., Belousov M.V. Sterilization of polyethylene tereph-thalate track membranes using low-temperature atmospheric-pressure plasma. Biomedical Engineering. 2017. V. 51. N 2. P. 111-115. DOI: 10.1007/s10527-017-9695-6.

Elinson V., Lyamin A., Kravets L., Kikot I., Sylnitskaya O. Biological activity, physical and chemical properties of PET track membranes with a nanostructured surface. High Temp. Mater. Proc. 2014. V. 18. N 3. P. 215-226. DOI: 10.1615/HighTempMatProc.2015015453.

Didenko L.V., Elinson V.M., Shenlyagina N.V., Avtandilov G.A., Lyamin A.N., Kravets L.I., Dinescu G., Yablokov M.Yu. Chapter in: Microbes in the spotlight: recent progress in the understanding of beneficial and harmful microorganisms. Ed. by A. Mendez-Vilas. Boka Raton (Florida, USA): Brown Walker Press. 2016. P. 417-426.

Опубликован
2018-04-17
Как цитировать
Kravets, L. I., & Gilman, A. B. (2018). МОДИФИЦИРОВАНИЕ ТРЕКОВЫХ МЕМБРАН С ИСПОЛЬЗОВАНИЕМ НИЗКОТЕМПЕРАТУРНОЙ ПЛАЗМЫ. ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. СЕРИЯ «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ», 61(4-5), 4-30. https://doi.org/10.6060/tcct.20186104-05.5740
Раздел
Обзорные статьи