ПРИМЕНЕНИЕ СВЕРХКРИТИЧЕСКОЙ ЭКСТРАКЦИИ ДЛЯ ВЫДЕЛЕНИЯ ХИМИЧЕСКИХ СОЕДИНЕНИЙ

  • Natalya V. Menshutina Российский химико-технологический университет им. Д.И. Менделеева
  • Artem I. Artemiev Российский химико-технологический университет им. Д.И. Менделеева
  • Illarion I. Khudeev Российский химико-технологический университет им. Д.И. Менделеева
  • Ilya V. Kazeev Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина Минздрава РФ
  • Olga A. Bocharova Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина Минздрава РФ
Ключевые слова: сверхкритическая экстракция, зеленые технологии, экстракция, сверхкритические флюиды, сверхкритический диоксид углерода

Аннотация

В данной работе приведен обзор научной литературы по исследованию процесса сверхкритической экстракции. Использование веществ в сверхкритическом состоянии в качестве экстрагента является основой процесса сверхкритической экстракции. В среде сверхкритического флюида имеет место высокая интенсивность массопереноса, что позволяет сверхкритическому флюиду легко проникать в сырье и эффективно извлекать целевые компоненты. Особый интерес представляет диоксид углерода, так как его применение в качестве экстрагента в процессе сверхкритической экстракции отвечает основным принципам «зеленой химии». В работе представлены механизмы массопереноса целевых компонентов из растительного сырья, возникающие в ходе процесса сверхкритической экстракции с использованием диоксида углерода. Рассмотрена кинетика сверхкритической экстракции, в ходе процесса выделяют три основных периода: период постоянной скорости экстракции, период падающей скорости экстракции, период низкой скорости экстракции. Показано влияние температуры и давления, влияния воды в сырье на выход целевых компонентов в процессе сверхкритической экстракции. Проведение сверхкритической экстракции требует специального оборудования высокого давления, в работе представлены основные технологические решения для реализации процесса. Проведено сравнение процесса сверхкритической экстракции с экстракцией в аппарате Сокслета. Процесс сверхкритической экстракции позволяет получать экстракт высокой чистоты, что является перспективным для получения биологически активных лекарственных компонентов и отделения примесей из трудноразделимых смесей. Приведены примеры применения сверхкритической экстракции в промышленности. Кроме того, в работе представлены исследования по извлечению аралозидов из растительного сырья корней аралии маньчжурской с применением процесса сверхкритической экстракции. Сверхкритическая экстракция рассматривается как безопасный и эффективный способ извлечения целевых компонентов из растительного сырья.

Литература

De Jesus S.S., Filho R.M. Recent advances in lipid ex-traction using green solvents. Renew. Sust. Energy Rev. 2020. V. 133. P. 1-35. DOI: 10.1016/2020.110289.

Campalani C. Supercritical CO2 as a green solvent for the circular economy: Extraction of fatty acids from fruit pomace. J. CO2 Utilization. 2020. V. 41. P. 1-6. DOI: 10.1016/2020.101259.

Mazzutti S. Supercritical fluid extraction of Agaricus brasiliensis: Antioxidant and antimicrobial activities. J. Supercrit. Fluids. 2012. V. 70. P. 48-56. DOI: 10.1016/2012.06.010.

Oliveira A.L. Supercritical extraction of coumarin from guaco (Mikania laevigata and Mikania glomerata) for pharmaceutical applications. J. Supercrit. Fluids. 2013. V. 83. P. 65-71. DOI: 10.1016/2013.07.019.

Mendes R.L. Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg. Chim. Acta. 2003. V. 356. P. 328-334. DOI: 10.1016/S0020-1693(03)00363-3.

Baldino L., Scognamiglio M., Reverchon E. Supercritical fluid technologies applied to the extraction of com-pounds of industrial interest from Cannabis sativa L. and to their pharmaceutical formulations: A review. J. Supercrit. Fluids. 2020. V. 165. P. 1-10. DOI: 10.1016/2020.104960.

Surup G.R. The effect of wood composition and supercritical CO2 extraction on charcoal production in ferroalloy industries. Energy. 2020. V. 193. P. 1-14. DOI: 10.1016/2019.116696.

Knez Ž., Škerget M., KnezHrnčič M. 1 - Principles of supercritical fluid extraction and applications in the food, beverage and nutraceutical industries. In: Separation, Extraction and Concentration Process-es in the Food, Beverage and Nutraceutical Industries. Ed. by S.S.H. Rizvi. Woodhead Publishing. 2013. P. 3-38. DOI: 10.1533/9780857090751.1.3.

Coelho J.P. Supercritical CO2 extraction of spent coffee grounds. Influence of co-solvents and characterization of the extracts. J. Supercrit. Fluids. 2020. V. 161. P. 1-13. DOI: 10.1016/j2020.104825.

De Marco I., Riemma S., Iannone R. Life cycle assessment of supercritical CO2 extraction of caffeine from coffee beans. J. Supercrit. Fluids. 2018. V. 133. P. 393-400. DOI: 10.1016/2017.11.005.

Dias A.L.B., dos Santos P., Martínez J. Supercritical CO2 technology applied to the production of flavor ester compounds through lipase-catalyzed reaction: A review. J. CO2 Utilization. 2018. V. 23. P. 159-178. DOI: 10.1016/2017.11.011.

Gallego R., Bueno M., Herrero M. Sub- and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae - An update. TrAC Trends in Analyt. Chem. 2019. V. 116. P. 198-213. DOI: 10.1016/2019.04.030.

Lefebvre T. Supercritical Fluid Chromatography development of a predictive analytical tool to selectively extract bioactive compounds by supercritical fluid extraction and pressurised liquid extraction. J. Chromatography A. 2020. V. 163. P. 1-10. DOI: 10.1016/j.chroma.2020.461582.

Pinto D. Valorisation of underexploited Castanea sativa shells bioactive compounds recovered by supercritical fluid extraction with CO2: A response surface methodology approach. J. CO2 Utilization. 2020. V. 40. P. 1-11. DOI: 10.1016/j.jcou.2020.101194.

Jafarian Asl P., Niazmand R. Modelling and simulation of supercritical CO2 extraction of bioactive compounds from vegetable oil waste. Food Bioprod. Proc. 2020. V. 122. P. 311-321.

Da Silva R.P., Rocha-Santos T.A., Duarte A.C. Supercritical fluid extraction of bioactive compounds. TrAC Trends in Analyt. Chem. 2016. V. 76. P. 40-51. DOI: 10.1016/j.fbp.2020.05.005.

Garcez J.J. Evaluation and mathematical modeling of processing variables for a supercritical fluid extraction of aromatic compounds from Anethum graveolens. Indust. Crops Prod. 2017. V. 95. P. 733-741. DOI: 10.1016/j.indcrop.2016.11.042.

Costa P. Extraction of aromatic volatiles by hydrodistillation and supercritical fluid extraction with CO2 from Helichrysum italicum subsp. picardii growing in Portugal. Indust. Crops Prod. 2015. V. 77. P. 680-683. DOI: 10.1016/j.indcrop.2015.09.042.

Győri E. Supercritical CO2 extraction and selective adsorption of aroma materials of selected spice plants in functionalized silica aerogels. J. Supercrit. Fluids. 2019. V. 148. P. 16-23. DOI: 10.1016/j.supflu.2019.02.025.

Malaman F.S. Supercritical fluid extracts from the Brazilian cherry (Eugenia uniflora L.): Relationship between the extracted compounds and the characteristic flavour intensity of the fruit. Food Chem. 2011. V. 124. N 1. P. 85-92. DOI: 10.1016/j.foodchem.2010.05.109.

Padma Ishwarya S., Nisha P. 2.42 - Headway in Supercritical Extraction of Fragrances and Colors. In: Innova-tive Food Processing Technologies. Ed. by K. Knoerzer, K. Muthukumarappan. Oxford: Elsevier. 2021. P. 620-639.

Gumerov F. M. Sub-and supercritical fluid media in the food, perfume, and pharmaceutical industries. Vestn. Ka-zan. Tekhnol. Un-ta. 2017. V. 20. N 8. P. 30-35 (in Rus-sian).

Conde-Hernández L.A., Espinosa-Victoria J.R., Guerrero-Beltrán J.Á. Supercritical extraction of essential oils of Piper auritum and Porophyllum ruderale. J. Supercrit. Fluids. 2017. V. 127. P. 97-102. DOI: 10.1016/j.supflu.2017.03.026.

del Valle J.M., Calderón D., Núñez G.A. Pressure drop may negatively impact supercritical CO2 extraction of citrus peel essential oils in an industrial-size extraction ves-sel.

J. Supercrit. Fluids. 2019. V. 144. P. 108-121. DOI: 10.1016/j.supflu.2018.09.005.

Arranz E. Supercritical fluid extraction as an alternative process to obtain essential oils with anti-inflammatory properties from marjoram and sweet basil. Indust. Crops Prod. 2015. V. 67. P. 121-129. DOI: 10.1016/j.indcrop.2015.01.012.

Santo A.T. do E. Decaffeination of yerba mate by supercritical fluid extraction: Improvement, mathematical modelling and infusion analysis. J. Supercrit. Fluids. 2021. V. 168. P. 1-10. DOI: 10.1016/j.supflu.2020.105096.

Zabot G.L. Chapter 11 - Decaffeination using supercritical carbon dioxide. In: Green Sustainable Process for Chemical and Environmental Engineering and Science. Ed. by Inamuddin, A.M. Asiri, A.M. Isloor. Elsevier. 2020. P. 255-278. DOI: 10.1016/B978-0-12-817388-6.00011-8.

Sökmen M., Demir E., Alomar S.Y. Optimization of sequential supercritical fluid extraction (SFE) of caffeine and catechins from green tea. J. Supercrit. Fluids. 2018. V. 133. P. 171-176. DOI: 10.1016/j.supflu.2017.09.027.

Arumugham T. Supercritical carbon dioxide extraction of plant phytochemicals for biological and environmental applications - A review. Chemosphere. 2021. V. 271. P. 1-19. DOI: 10.1016/j.chemosphere.2020.129525.

Tita G.J. Model assisted supercritical fluid extraction and fractionation of added-value products from tobacco scrap. J. Supercrit. Fluids. 2021. V. 167. P. 1-8. DOI: 10.1016/j.supflu.2020.105046.

Zaharil H.A. An investigation on the usage of different supercritical fluids in parabolic trough solar collector. Renew. Energy. 2021. V. 168. P. 676-691. DOI: 10.1016/j.renene.2020.12.090.

Evstaf’ev S.N., Hoang C.Q. Purification of 1-butyl-3-methylimidazolium chloride after dissolution of wheat straw. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2018. V. 61. N 3. P. 8387.

DOI: 10.6060/tcct.20186103.5615.

Kovalenko E.Yu., Sagachenko T.A., Min R.S., Patrakov Yu.F. Compositions of hydrocarbons and heteroor-ganic compounds in organic substance and products of thermal decomposition under supercritical conditions of kerogen in oil shale from Chim-Loptyug deposit. Chem-ChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2018. V. 61. N 7. P. 99-105. DOI: 10.6060/ivkkt.20186107.5700.

Zil'fikarov I.N., Chelombitko V.A., Aliyev A.M. Treatment of medicinal plant raw materials with liquefied gas-es and supercritical liquids. M.: Pyatigorsk. 2007. 244 p. (in Russian).

Ballesteros-Vivas D., Mendiola J.A., Ibáñez E. Extraction Supercritical Fluid Extraction. In: Encyclopedia of Analytical Science. Ed. by P. Worsfold. Oxford: Academic Press. 2019. P. 127-133.

McHugh M., Krukonis V. Supercritical fluid extraction: principles and practice. Elsevier. 2013. 503 p.

Gumerov F.M. Supercritical fluid technologies. Economic feasibility. M.: OOO «Butlerovskoye naslediye». 2019. 440 p. (in Russian).

Herrero M., Cifuentes A., Ibañez E. Sub-and supercritical fluid extraction of functional ingredients from differ-ent natural sources: Plants, food-by-products, algae and microalgae: A review. Food chem. 2006. V. 98. N 1. P. 136-148. DOI: 10.1016/j.foodchem.2005.05.058.

Medina K.T. 2.37 - Transport Phenomena Associated to Supercritical Extraction. In: Innovative Food Processing Technologies. Ed. by K. Knoerzer, K. Muthukumarappan. Oxford: Elsevier. 2021. P. 522-551.

Molino A. Recent developments in supercritical fluid extraction of bioactive compounds from microalgae: Role of key parameters, technological achievements and challenges. J. CO2 Utilization. 2020. V. 36. P. 196-209. DOI: 10.1016/j.jcou.2019.11.014.

Jesus S.P. A simplified model to describe the kinetic behavior of supercritical fluid extraction from a rice bran oil byproduct. Food Pub. Health. 2013. V. 3. N 4. P. 215-222.

Salinas F. Supercritical fluid extraction of chañar (Geoffroea decorticans) almond oil: Global yield, kinetics and oil characterization. J. Supercrit. Fluids. 2020. V. 161. P. 1-8. DOI: 10.1016/j.supflu.2020.104824.

Song Y., Zheng L., Zhang X. Kinetics model for supercritical fluid extraction with variable mass transport. In-ternat. J. Heat Mass Transfer. 2017. V. 112. P. 876-881. DOI: 10.1016/j.ijheatmasstransfer.2017.05.002.

de Melo M.M.R. Experimental and modeling study of supercritical CO2 extraction of Quercus cerris cork: Influence of ethanol and particle size on extraction kinetics and selectivity to friedelin. Separat. Purificat. Technol. 2017. V. 187. P. 34-45. DOI: 10.1016/j.seppur.2017.06.011.

Mezzomo N., Martínez J., Ferreira S.R.S. Supercritical fluid extraction of peach (Prunus per-sica) almond oil: Kinetics, mathematical modeling and scale-up. J. Supercrit. Fluids. 2009. V. 51. N 1. P. 10-16. DOI: 10.1016/j.supflu.2009.07.008.

Araus K., Uquiche E., del Valle J.M. Matrix effects in supercritical CO2 extraction of essential oils from plant material. J. Food Eng. 2009. V. 92. N 4. P. 438-447. DOI: 10.1016/j.jfoodeng.2008.12.016.

Machmudah S. Pressure effect in supercritical CO2 extraction of plant seeds. J. Supercrit. Fluids. 2008. V. 44. N 3. P. 301-307. DOI: 10.1016/j.supflu.2007.09.024.

Nagy B., Simándi B., Dezső András C. Characterization of packed beds of plant materials processed by super-critical fluid extraction. J. Food Eng. 2008. V. 88. N 1. P. 104-113.

Palsikowski P.A. Supercritical CO2 oil extraction from Bauhinia forficata link subsp. pruinosa leaves: Composition, antioxidant ac-tivity and mathematical modeling. J. Supercrit. Fluids. 2019. V. 153. P. 1-9. DOI: 10.1016/j.supflu.2019.104588.

Díaz-Reinoso B. Supercritical CO2 extraction and purification of compounds with antioxidant activity. J. Agricult. and food chem. 2006. V. 54. N 7. P. 2441-2469. DOI: 10.1021/jf052858j.

Ivanovic J., Ristic M., Skala D. Supercritical CO2 extraction of Helichrysum italicum: Influence of CO2 density and moisture content of plant material. J. Supercrit. Fluids. 2011. V. 57. N 2. P. 129-136. DOI: 10.1016/j.supflu.2011.02.013.

Kostrzewa D., Dobrzyńska-Inger A., Reszczyński R. Pilot scale supercritical CO2 extraction of carotenoids from sweet paprika (Capsicum annuum L.): Influence of particle size and moisture content of plant material. LWT. 2021. V. 136. P. 1-8. DOI: 10.1016/j.lwt.2020.110345.

Núñez G.A., del Valle J.M. Supercritical CO2 oilseed extraction in multivessel plants. 2. Effect of number and geometry of extractors on production cost. J. Supercrit. Fluids. 2014. V. 92. P. 324-334. DOI: 10.1016/j.supflu.2014.05.017.

Mouahid A. Supercritical CO2 extraction of Moroccan argan (Argania spinosa L.) oil: Extraction kinetics and solubility determination. J. CO2 Utilization. 2021. V. 46. P. 1-10. DOI: 10.1016/j.jcou.2021.101458.

Hogan P. Effect of biomass pre-treatment on supercritical CO2 extraction of lipids from marine diatom Amphora sp. and its biomass evaluation as bioethanol feedstock. Heliyon. 2021. V. 7. N 1. P. 1-8. DOI: 10.1016/j.heliyon.2021.e05995.

Promraksa A. Modeling of Supercritical CO2 Extraction of Palm Oil and Tocopherols Based on Volumetric Axial Dispersion. J. Supercrit. Fluids. 2020. V. 166. P. 1-11. DOI: 10.1016/j.supflu.2020.105021.

Leybros A. Supercritical CO2 extraction of uranium from natural ore using organophosphorus extractants. Chem. Eng. J. 2017. V. 316. P. 196-203. DOI: 10.1016/j.cej.2017.01.101.

Yousefi M. Supercritical fluid extraction of essential oils. TrAC Trends in Analyt. Chem. 2019. V. 118. P. 182-193. DOI: 10.1016/j.trac.2019.05.038.

Yevstaf'yev S.N., Fomina Ye.S., Privalova Ye.A. Ethanol from wheat straw under pre - and supercritical extrac-tion conditions. Khim. Rastit. Syr'ya. 2011. N 4. P.15-18 (in Russian).

Schuster J.J. Online monitoring of the supercritical CO2 extraction of hop. J. Supercrit. Fluids. 2018. V. 133. P. 139-145. DOI: 10.1016/j.supflu.2017.10.006.

Rahman M.S. Physicochemical characteristics and microbial safety of defatted bovine heart and its lipid ex-tracted with supercritical-CO2 and solvent extraction. LWT. 2018. V. 97. P. 355-361. DOI: 10.1016/j.lwt.2018.07.019.

Gabitov F.R. Experimental study of supercritical algae extraction. Vestn. Kazan. Tekhnol. Un-ta. 2012. V. 15. N 9. P. 67-69 (in Russian).

Yarullin L.Yu., Kayumova V.A., Gabitov F.R. Supercritical fluid extraction of shag using ethanol as a co-solvent. Vestn. Kazan. Tekhnol. Un-ta. 2015. V. 18. N 14. P. 56-58 (in Russian).

Ivakhnov A.D., Skrebets T.E., Bogolitsyn K.G. Super-critical fluid extraction of chlorophylls and carotenoids of Laminaria digitate. Khim. Rastit. Syr'ya. 2014. N 4. P. 177-182 (in Russian). DOI: 10.14258/jcprm.201404368.

Druzhinina A.S. Supercritical fluid extraction of arctic brown algae species fucus vesiculosus. Sverkhkrit. Flyuidy (SKF): Fund. Osn., Tekhnol., Innov. 2017. P. 218-220 (in Russian).

Panadare D., Dialani G., Rathod V. Extraction of volatile and non-volatile components from custard apple seed powder using supercritical CO2 extraction system and its inventory analysis. Proc. Biochem. 2021. V. 100. P. 224-230. DOI: /10.1016/j.procbio.2020.09.030.

Ben Said A. Modeling of supercritical CO2 extraction of contaminants from post-consumer polypropylene: Solubilities and diffusion coefficients in swollen polymer at varying pressure and temperature conditions. Chem. Eng. Res. Des. 2017. V. 117. P. 95-109. DOI: 10.1016/j.cherd.2016.10.020.

Wang J. Kinetic Study on Extraction of Red Pepper Seed Oil with Supercritical CO2. Chin. J. Chem. Eng. 2014. V. 22. N 1. P. 44-50. DOI: 10.1016/S1004-9541(14)60003-3.

Santos K.A. Extraction of vetiver (Chrysopogon zizanioides) root oil by supercritical CO2, pressurized-liquid, and ultrasound-assisted methods and modeling of supercritical extraction kinetics. J. Supercrit. Fluids. 2019. V. 150. P. 30-39. DOI: 10.1016/j.supflu.2019.04.005.

Pavlić B. Chemical profile and antioxidant activity of sage herbal dust extracts obtained by supercritical fluid extraction. Indust. Crops Prod. 2018. V. 120. P. 305-312. DOI: 10.1016/j.indcrop.2018.04.044.

Chhouk K. Efficacy of supercritical carbon dioxide integrated hydrothermal extraction of Khmer medicinal plants with potential pharmaceutical activity. J. Environ. Chem. Eng. 2018. V. 6. N 2. P. 2944-2956. DOI: 10.1016/j.jece.2018.04.036.

Mustapa A.N. Extraction of phytocompounds from the medicinal plant Clinacanthus nutans Lindau by micro-waveassisted extraction and supercritical carbon dioxide extraction. Indust. Crops Prod. 2015. V. 74. P. 83-94. DOI: 10.1016/j.indcrop.2015.04.035.

Ferrentino G. Biorecovery of antioxidants from apple pomace by supercritical fluid extraction. J. Clean. Prod-uct. 2018. V. 186. P. 253-261. DOI: 10.1016/j.jclepro.2018.03.165.

Kayathi A. Extraction of γ-Oryzanol from defatted rice bran using supercritical carbon dioxide (SC-CO2): Process optimisation of extract yield, scale-up and economic analysis. Proc. Safety Environ. Protect. 2021. V. 148. P. 179-188. DOI: 10.1016/j.psep.2020.09.067.

Soares J.F. Extraction of rice bran oil using supercritical CO2 and compressed liquefied petroleum gas. J. Food Eng. 2016. V. 170. P. 58-63. DOI: 10.1016/j.jfoodeng.2015.09.016.

Bitencourt R.G. Solubility of γ-oryzanol in supercritical carbon dioxide and extraction from rice bran. J. Supercrit. Fluids. 2016. V. 107. P. 196-200. DOI: 10.1016/j.supflu.2015.09.009.

Gil'mutdinov I.M. Submicron and nanoscale structuring of composite materials in the processes of impregnation and expansion of supercritical fluid and gas-saturated solutions. Vestn. Kazan. Tekhnol. Un-ta. 2015. V. 18. N 1. P. 116-118 (in Russian).

Samsonov M.D. Supercritical fluid extraction in modern radiochemistry. Radiokhimiya. 2011. V. 53. N 2. P. 97 (in Russian).

Trubetskaya A. Supercritical extraction of biomass as an effective pretreatment step for the char yield control in pyrolysis. Renew. Energy. 2021. V. 170. P. 107-117. DOI: 10.1016/j.renene.2021.01.116.

Surup G.R. The effect of wood composition and supercritical CO2 extraction on charcoal production in ferroalloy industries. Energy. 2020. V. 193. P. 1-14. DOI: 10.1016/j.energy.2019.116696.

Zhang X., Ranjith P.G., Ranathunga A.S. Sub- and supercritical carbon dioxide flow variations in large high-rank coal specimen: An experimental study. Energy. 2019. V. 181.

P. 148-161. DOI: 10.1016/j.energy.2019.04.213.

Kang J. Effects of supercritical CO2 extraction on adsorption characteristics of methane on different types of coals. Chem. Eng. J. 2020. V. 388. P. 1-18. DOI: 10.1016/j.cej.2019.123449.

Cossey H.L. Supercritical fluid extraction of bitumen using chemically modified carbon dioxide. J. Supercrit. Fluids. 2019. V. 154. P. 1-9. DOI: 10.1016/j.supflu.2019.104599.

Cooper A.I. Polymer synthesis and processing using supercritical carbon dioxide. J. Mater. Chem. Royal Soc. Chem. 2000. V. 10. N 2. P. 207-234. DOI: 10.1039/A906486I.

Yao Y., Chau E., Azimi G. Supercritical fluid extraction for purification of waxes derived from polyethylene and polypropylene plastics. Waste Manag. 2019. V. 97. P. 131-139. DOI: 10.1016/j.wasman.2019.08.003.

Filonova O.V. Hydrolysis of aralosides from Manchurian aralia to oleanolic acid and its derivatives in subcritical water. Russ. J. Phys. Chem. B. 2016. V. 10. N 7. P. 1085-1091. DOI: 10.1134/S1990793116070071.

Опубликован
2021-05-15
Как цитировать
Menshutina, N. V., Artemiev, A. I., Khudeev, I. I., Kazeev, I. V., & Bocharova, O. A. (2021). ПРИМЕНЕНИЕ СВЕРХКРИТИЧЕСКОЙ ЭКСТРАКЦИИ ДЛЯ ВЫДЕЛЕНИЯ ХИМИЧЕСКИХ СОЕДИНЕНИЙ. ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. СЕРИЯ «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ», 64(6), 4-19. https://doi.org/10.6060/ivkkt.20216406.6405
Раздел
Обзорные статьи