ДИНАМИКА ФОТОДИССОЦИАЦИИ НЕУПОРЯДОЧЕННЫХ МОЛЕКУЛЯРНЫХ АНСАМБЛЕЙ ПО ДАННЫМ МЕТОДА ДИФРАКЦИИ ЭЛЕКТРОНОВ С ВРЕМЕННЫМ РАЗРЕШЕНИЕМ

  • Lothar Schafer Университет штат Арканзас
  • Anatoly A. Ischenko Кафедра аналитической химии Института тонких химических технологий Московского технологического университета
  • Yury A. Zhabanov Кафедра физики Ивановского государственного химико-технологического университета
  • Arseniy A. Otlyotov Кафедра физики Ивановского государственного химико-технологического университета
  • Georgiy V. Girichev Кафедра физики Ивановского государственного химико-технологического университета
Ключевые слова: дифракция электронов с временным разрешением, переходные состояния реакционных центров, процессы фотодиссоциации, когерентная динамика фотодиссоциации

Аннотация

Введение времени в дифракционные методы и разработка основополагающих принципов их анализа открывает новую методологию для изучения переходных состояний центров реакции и короткоживущих промежуточных соединений в газообразных и конденсированных средах. В данной статье мы предлагаем основные элементы теории, которые могут быть использованы при анализе данных, полученных методом TRED для хаотически ориентированных лазеро-возбужденных молекул. Разработанная теория применима к процессам фотодиссоциации свободных молекул. Теория иллюстрируется моделированием фотогенерированной диссоциации молекул ICN. На основе модельных расчетов, представленных в этой статье, мы приходим к выводу, что методом TRED возможно исследование когерентной динамики процессов фотодиссоциации. Зависящие от времени данные метода TRED позволяют наблюдать динамику фотодиссоциации при реалистичном значении временного разрешения метода, составляющего 300 фс, что достигается в ряде экспериментальных установок метода TRED.

Литература

Ischenko A.A., Golubkov V.V., Spiridonov V.P., Zgurskii A.V., Akhmanov A.S., Vabischevich M.G., Bagratashvili V.N. A stroboscopical gas-electron diffraction method for the investigation of short-lived molecular species. Appl. Phys. B. 1983. V. 32. N 3. P. 161-163. DOI: 10.1007/BF00688823.

Ischenko A.A., Bagratashvili V.N., Golubkov V.V., Spiri-donov V.P., Zgurskii A.V., Akhmanov A.S. Observation of the electron diffraction on the free radicals – the products of multiphoton IR dissociation of the molecules by stroboscopic gas electron diffraction. Bull. Moscow Univ. Ser 2. Chem. 1985. V. 26. N 2. P. 140.

Ischenko A.A., Tarasov Y.I., Spiridonov V.P., Zgurskii A.V. The study of short-lived intermediate species and struc-tural kinetics of photoexcited molecules by stroboscopic electron diffraction. Interuniversity collection of scientific papers. The Structure and Properties of Molecules. Ivanovo: IICS. 1988. P. 63 (in Russian).

Vabishchevich M.G., Ischenko A.A. Method of studying the kinetics of fast processes. USSR Certificate number 1679907. 1991.

Norrish R.G.W., Porter G. Chemical Reactions Produced by Very High Light Intensities. Nature. 1949. V. 164. P. 658. DOI: 10.1038/164658a0.

Tomov I.V., Chen P., Lin S.H., Rentzepis P.M. Picosecond hard X-ray pulses and their application to time-resolved dif-fraction, in: Time-resolved Diffraction. Oxford: Claredon Press. 1997. 456 p.

Ischenko A.A., Aseyev S.A. Time Resolved Electron Dif-fraction: for chemistry, biology and material science. San-Diego: Elsevier. 2014. 310 p.

Minitti M.P., Budarz J.M., Kirrander A., Robinson J., Lane T.J., Ratner D., Saita K., Northey T., Stankus B., Cofer-Shabica V., Hastings J., Weber P.M. Toward struc-tural femtosecond chemical dynamics: imaging chemistry in space and time. Faraday Discuss. 2014. V. 171. P. 81-91. DOI: 10.1039/C4FD00030G.

Ischenko A.A., Spiridonov V.P., Schäfer L., Ewbank J.D. The stroboscopic gas electron diffraction method for investi-gation of time-resolved structural kinetics in photoexcitation processes. J. Mol. Struct. 1993. V. 300. P. 115-140. DOI: 10.1016/0022-2860(93)87011-W.

Ewbank J.D., Schäfer L., Ischenko A.A. Structural and vibrational kinetics of photoexcitation processes using time resolved electron diffraction. J. Mol. Struct. 2000. V. 524. N 1–3. P. 1-49. DOI: 10.1016/S0022-2860(99)00419-6.

Ischenko A.A., Girichev G.V., Tarasov Yu.I. Electron diffraction: structure and dynamics of free molecules and condensed matter. M.: Fizmatlit. 2013. 614 p. (in Russian).

Ruan C.-Y., Murooka Y., Raman R.K., Murdick R.A., Worhatch R.J., Pell A. The Development and Applications of Ultrafast Electron Nanocrystallography. Microsc. Microanal. 2009. V. 15. N 4. P. 323-337. DOI: 10.1017/S1431927609090709.

Weber P.M., Carpenter S.D., Lucza T. Reflectron design for femtosecond electron guns. Proc. SPIE. 1995. V. 2521. P. 23-30. DOI: 10.1117/12.218364.

King W.E., Campbell G.H., Frank A., Reed B., Schmerge J.F., Siwick B.J., Stuart B.C., Weber P.M. Ultrafast elec-tron microscopy in materials science, biology, and chemistry. J. Appl. Phys. 2005. V. 97. N 11. P. 111101. DOI: 10.1063/1.1927699.

Zewail A.H. 4D Ultrafast electron diffraction, crystallography and microscopy. Annu. Rev. Phys. Chem. 2006. V. 57. N 1. P. 65-103. DOI: 10.1146/annurev.physchem.57.032905.104748.

Zewail A.H. Four-Dimensional Electron Microscopy. Sci-ence. 2010. V. 328. N 5975. P. 187-193. DOI: 10.1126/science. 1166135

Zewail A.H., Thomas J.M. 4D Electron Microscopy: Imaging in Space and Time. London: Imperial College Press. 2010. 360 p.

Ischenko A.A. Molecular Tomography of the Quantum State by Time-Resolved Electron Diffraction. Phys. Res. Int. 2013. V. 2013. P. 8.

Germán S., Miller R.J.D. Femtosecond electron diffraction: heralding the era of atomically resolved dynamics. Rep. Prog. Phys. 2011. V. 74. N 9. P. 096101.

Ischenko A.A., Bagratashvili V.N., Avilov A.S. Methods for studying the coherent 4D structural dynamics of free molecules and condensed state of matter. Crystallography Reports. 2011. V. 56. N 5. P. 751-773. DOI: 10.1134/S1063774511050129.

Miller R.J.D. Mapping Atomic Motions with Ultrabright Electrons: The Chemists' Gedanken Experiment Enters the Lab Frame. Annu. Rev. Phys. Chem. 2014. V. 65. N 1. P. 583-604. DOI: 10.1146/annurev-physchem-040412-110117.

Miller R.J.D. Femtosecond Crystallography with Ultrabright Electrons and X-rays: Capturing Chemistry in Action. Science. 2014. V. 343. N 6175. P. 1108-1116. DOI: 10.1126/science.1248488.

Ischenko A.A., Aseev S.A., Bagratashvili V.N., Panchenko V.Y., Ryabov E.A. Ultrafast electron diffraction and electron microscopy: present status and future prospects. Physics-Uspekhi. 2014. V. 57. N 7. P. 633-669. DOI: 10.3367/UFNe.0184.201407a.0681.

Campbell G.H., McKeown J.T., Santala M.K. Time resolved electron microscopy for in situ experiments. Appl. Phys. Rev. 2014. V. 1. N 4. P. 041101. DOI: 10.1063/1.4900509.

Kim K.T., Villeneuve D.M., Corkum P.B. Manipulating quantum paths for novel attosecond measurement methods. Nat Photon. 2014. V. 8. N 3. P. 187-194. DOI: 10.1038/nphoton.2014.26.

Petek H. Single-Molecule Femtochemistry: Molecular Imag-ing at the Space-Time Limit. ACS Nano. 2014. V. 8. N 1. P. 5-13. DOI: 10.1021/nn4064538.

Manz S., Casandruc A., Zhang D., Zhong Y., Loch R.A., Marx A., Hasegawa T., Liu L.C., Bayesteh S., Delsim-Hashemi H., Hoffmann M., Felber M., Hachmann M., Mayet F., Hirscht J., Keskin S., Hada M., Epp S.W., Flottmann K., Miller R.J.D. Mapping atomic motions with ultrabright electrons: towards fundamental limits in space-time resolution. Faraday Discuss. 2015. V. 177. P. 467-491. DOI: 10.1039/C4FD00204K.

Robinson M.S., Lane P.D., Wann D.A. A compact electron gun for time-resolved electron diffraction. Rev. Sci. Instrum. 2015. V. 86. N 1. P. 013109. DOI: 10.1063/1.4905335.

Plemmons D.A., Suri P.K., Flannigan D.J. Probing Struc-tural and Electronic Dynamics with Ultrafast Electron Mi-croscopy. Chem. Mater. 2015. V. 27. N 9. P. 3178-3192. DOI: 10.1021/acs.chemmater.5b00433.

Bonham R.A., Fink M. High Energy Electron Scattering. New-York: Van Nostrand Reinhold. 1974. 318 p.

Hargittai I., Hargittai M. Stereochemical Applications of Gas-Phase Electron Diffraction. New-York: VCH Publishers, Inc. 1988. 563 p.

Ischenko A.A., Schäfer L., Ewbank J.D. Structural kinetics by time-resolved gas electron diffraction: coherent nuclear dynamics in laser excited spatially anisotropic molecular en-sembles. J. Mol. Struct. 1996. V. 376. N 1. P. 157-171. DOI: 10.1016/0022-2860(95)09073-8.

Ischenko A.A., Shafer L., Ewbank J.D. Time-resolved electron diffraction: a method to study the structural vibra-tional kinetics of photoexcited molecules. New-York: Oxford University Press. 1997. P. 323-390.

Debye P. The Influence of Intramolecular Atomic Motion on Electron Diffraction Diagrams. J. Chem. Phys. 1941. V. 9. N 1. P. 55-60. DOI: 10.1063/1.1750826.

Cohen-Tannoudji C., Diu B., Laloe F. Quantum Mechan-ics. New-York: Wiley-Interscience. 1987. 887 p.

Ewbank J.D., Schäfer L., Ischenko A.A. Structural kinetics by stroboscopic gas electron diffraction 2. Time-dependent molecular intensities of predissociation processes. J. Mol. Struct. 1994. V. 321. N 3. P. 265-278. DOI: 10.1016/0022-2860(94)07995-1.

Tikhonov A.N., Goncharsky A.V., Stepanov V.V., Yagola A.G. Numerical Methods for the Solution of Ill-Posed Problems. M.: Nauka. 1990. 232 p. (in Russian).

Tikhonov A.N., Leonov A.S., Yagola A.G. Non-linear ill-posed problems. M.: Nauka. 1995. 312 p. (in Russian).

Rapp D., Kassal T. Theory of vibrational energy transfer between simple molecules in nonreactive collisions. Chem. Rev. 1969. V. 69. N 1. P. 61-102. DOI: 10.1021/cr60257a003.

Levine R.D., Bernstein R.B. Molecular Reaction Dynamics. New-York: Oxford University Press. 1974. 250 p.

Herzberg G. Electronic Spectra and Electronic Structure of Polyatomic Molecules. Florida: Krieger Pub Co. 1966. 784 p.

Rosker M.J., Dantus M., Zewail A.H. Femtosecond real‐time probing of reactions. I. The technique. J. Chem. Phys. 1988. V. 89. N 10. P. 6113-6127. DOI: 10.1063/1.455427.

Khundkar L.R., Zewail A.H. Ultrafast Molecular Reaction Dynamics in Real-Time: Progress Over a Decade. Annu. Rev. Phys. Chem. 1990. V. 41. N. 1. P. 15-60. DOI: 10.1146/annurev.pc.41.100190.000311.

Okabe H. Photochemistry of Small Molecules. New-York: John Wiley & Sons Inc. 1978. 445 p.

Baronavski A.P. Laser ultraviolet photochemistry, in: Lasers as Reactants and probes in Chemistry. Washington: Howard University Press. 1985. P. 81.

Garraway B.M., Suominen K.A. Wave-packet dynamics: new physics and chemistry in femto-time. Rep. Prog. Phys. 1995. V. 58. N 4. P. 365.

Heller E.J. Time‐dependent approach to semiclassical dy-namics. J. Chem. Phys. 1975. V. 62. N 4. P. 1544-1555. DOI: 10.1063/1.430620.

Heller E.J. Potential Surface Properties and Dynamics from Molecular Spectra: A Time-Dependent Picture, in: Potential Energy Surfaces and Dynamics Calculations. New-York: Springer US. 1981. P. 103-131. DOI: 10.1007/978-1-4757-1735-8_4.

Heller E.J. Quantum localization and the rate of exploration of phase space. Phys. Rev. A. 1987. V. 35. N 3. P. 1360-1370. DOI: 10.1103/PhysRevA.35.1360.

Ischenko A.A., Ewbank J.D., Schäfer L. Structural kinetics by stroboscopic gas electron diffraction Part 1. Time-dependent molecular intensities of dissociative states. J. Mol. Struct. 1994. V. 320. P. 147-158. DOI: 10.1016/0022-2860(93)08011-R.

Mironov B.N., Kompanets V.O., Aseev S.A., Ishchenko A.A., Misochko O.V., Chekalin S.V., Ryabov E.A. Direct observation of the generation of coherent optical phonons in thin antimony films by the femtosecond electron diffraction method. JETP Letters. 2016. V. 103. N 8. P. 531-534. DOI: 10.1134/S0021364016080099.

Srinivasan R., Lobastov V.A., Ruan C.-Y., Zewail A.H. Ultrafast Electron Diffraction (UED). Helv. Chim. Acta. 2003. V. 86. N 6. P. 1761-1799. DOI: 10.1002/hlca.200390147.

Ischenko A.A., Schafer L., Luo J.Y., Ewbank J.D. Structural and Vibrational Kinetics by Stroboscopic Gas Electron Diffraction: The 193 nm Photodissociation of CS2. J. Phys. Chem. 1994. V. 98. N 35. P. 8673-8678. DOI: 10.1021/j100086a015.

Опубликован
2018-07-17
Как цитировать
Schafer, L., Ischenko, A. A., Zhabanov, Y. A., Otlyotov, A. A., & Girichev, G. V. (2018). ДИНАМИКА ФОТОДИССОЦИАЦИИ НЕУПОРЯДОЧЕННЫХ МОЛЕКУЛЯРНЫХ АНСАМБЛЕЙ ПО ДАННЫМ МЕТОДА ДИФРАКЦИИ ЭЛЕКТРОНОВ С ВРЕМЕННЫМ РАЗРЕШЕНИЕМ. ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. СЕРИЯ «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ», 59(12), 22-31. https://doi.org/10.6060/tcct.20165912.5514
Раздел
ХИМИЯ неорганич., органич., аналитич., физич., коллоидная, высокомол. соединений